
A Model and Heuristic Algorithms for Multi-Unit

Nondiscriminatory Combinatorial Auction1

Ali Haydar Özer and Can Özturan∗

Department of Computer Engineering

Boğaziçi University, 34342, Bebek, Istanbul, Turkey.

E-mail addresses: ozeralih@boun.edu.tr, ozturaca@boun.edu.tr

This is the accepted version of the article submitted to Computers & Operations Research journal.

This version contains all the materials without professional editing. The published journal article

is available at https://doi.org/10.1016/j.cor.2007.08.003

Full Citation:

Ali Haydar Özer, Can Özturan,

A model and heuristic algorithms for multi-unit nondiscriminatory combinatorial auction,

Computers & Operations Research,

Volume 36, Issue 1,

2009,

Pages 196-208,

ISSN 0305-0548,

https://doi.org/10.1016/j.cor.2007.08.003.

1This work has been funded by Boğaziçi University Scientific Projects (BAP) under the grant number #04A104.
∗Corresponding author. Address: Department of Computer Engineering, Boğaziçi University, 34342, Bebek,

Istanbul, Turkey. Tel: +90-212-359-7225 Fax: +90-212-287-2461 E-mail address: ozturaca@boun.edu.tr

1

A Model and Heuristic Algorithms for Multi-Unit

Nondiscriminatory Combinatorial Auction1

Ali Haydar Özer and Can Özturan∗

Department of Computer Engineering

Boğaziçi University, 34342, Bebek, Istanbul, Turkey.

E-mail addresses: ozeralih@boun.edu.tr, ozturaca@boun.edu.tr

1This work has been funded by Boğaziçi University Scientific Projects (BAP) under the grant number #04A104.
∗Corresponding author. Address: Department of Computer Engineering, Boğaziçi University, 34342, Bebek,

Istanbul, Turkey. Tel: +90-212-359-7225 Fax: +90-212-287-2461 E-mail address: ozturaca@boun.edu.tr

1

Abstract

Single unit combinatorial auction problem (CAP) and its multi-unit extension have received a

lot of attention recently. This paper introduces yet another variant of CAP which generalizes the

multi-unit CAP further to allow bids on collections of items that can come from bidder defined

classes of items. A bidder may be indifferent to some items with different brands, specifications

or qualities and consider them as substitutable. In this case, these items can be put in a class

and hence the bids can be made by referring to the items in such classes. This model enables the

bidder to express his requests by using fewer number of bids in case he does not discriminate

between different items. Because of this, we call this problem multi-unit nondiscriminatory

combinatorial auction (MUNCA) problem. An integer programming formulation is given for

this problem. Since this problem is NP-hard, two fast heuristic algorithms have also been

designed. The heuristics give quite good solutions when compared to the optimal solution.

Keywords : Combinatorial auctions; Multi-unit auctions; Combinatorial bidding; Winner deter-

mination; Integer programming; Optimization

2

1 Introduction

As defined in [1], an auction is a market institution with an explicit set of rules for determining

resource allocation and prices on the basis of bids from the market participants. In the traditional

sequential auction model, each item or indivisible bundle of items in the auction is auctioned one at

a time. Winner determination is done simply by picking the highest bidder for each item. Because

of its simplicity, this model has been widely used throughout the history. Most of the auctions

being conducted in the world use this model. English, Dutch, First-Price Sealed-Bid and Vickrey

auctions are the four major forms of sequential auction model [2]. These forms of auctions can be

extended to multi-unit case in which more than one identical or equivalent objects are auctioned

[3].

Sequential auctions are appropriate to use when the value of each item is unrelated to the values

of other items for every bidder. However, there may be complementarities and substitutabilities

between the items [4]. Assume that in an electronic equipment auction, several different brands

of televisions and video recorders are to be auctioned. The valuation of a bidder on the bundle

of a television and a video recorder can be higher than the sum of the valuations of the television

and the video recorder alone. So there is a complementarity between the television and the video

recorder for this bidder. Conversely, the valuation of the bidder on the bundle of two different

brands of televisions can be lower than the sum of the separate valuations. In this case, there

is a substitutability between the televisions of different brands for this bidder. Formally, comple-

mentarity between items i and j exists if gb({i, j}) > gb({i}) + gb({j}) where gb(S) is the gain

of getting a set of items S for a bidder b and substitutability between the items i and j exists if

gb({i, j}) < gb({i}) + gb({j}).
If there are complementarities between different items, sequential auctions may provide ineffi-

cient allocation. Although parallel auction model in which the items are auctioned simultaneously

can increase the allocation efficiency by reducing uncertainty, this does not help us in solving com-

plementarity problem that involves complementarities between the items [5]. Combinatorial auction

model solves this problem by allowing bidders to submit bids on combinations of different items

[6, 7]. In this model, all items are available to the bidders and the bidders are free to express

3

their own valuations of any combination of items. The combinatorial auction model is applica-

ble to many real-world situations such as the auctions for radio spectrum rights [8], airport slot

allocations [9], transportation services [10, 11, 12], course registrations [13], and commercial time

slot allocations [14]. Among these, probably the most famous auctions are the Federal Communi-

cations Commission (FCC) electromagnetic spectrum auctions [15, 16, 17, 18]. Since 1994, FCC

has conducted more than 50 auctions in the form of simultaneous multiple-round (SMR) auctions.

In SMR, licenses that have complementarities are available for bidding in parallel. The auctions

are conducted in successive rounds and the length of the rounds are announced by FCC. After

each round, results are processed and made public. Until the next round, bidders go over their

bid strategies and adjust their bids if necessary. An auction ends when no new bid is submitted

during a round. Although package bidding is not allowed in the SMR auctions, as announced

by FCC, in auction #31 (Upper 700 MHz Band) package bidding would be allowed. This FCC

auction, however, has not been implemented so far. [19] discusses the issues encountered in this

FCC auction that played a role in its being not adopted. In general, among the issues cited by

[19] are computational uncertainty and bidding complexity. This paper partly contributes to the

resolution of these issues by presenting fast heuristic algorithms for the multi-unit auction problem

and a compact bid representation.

In the combinatorial auction model, it is possible to solve the substitutability problem by in-

troducing dummy items for each substitutable item [4]. The role of the dummy items is to allow

bidders to express exclusive-or relationship between the bids. For instance, if a bidder wants to get

one television of brand A or B, one dummy item should be introduced and two separate bids, one

bid for the combination of dummy item and television of brand A and another bid for the combi-

nation of dummy item and television of brand B, must be submitted by the bidder. Although this

trick helps solving substitutability problem, the number of bids increases combinatorially with the

number of substitutable items.

The combinatorial auction model provides economically better allocation of items at the expense

of computational difficulty. Winner determination problem, CAP, as formulated by Rothkopf et.

al. [20] and Sandholm [5] is an instance of the weighted set packing problem (and also weighted

independent set problem) which are known to be NP-complete [21, 22, 20]. For unrestricted CAP,

4

many optimum search algorithms have been proposed [23, 4, 24, 5, 25, 26]. It must be noted that

although some specialized algorithms may perform better in some test cases when compared to

the commercial general purpose mixed integer programming (MIP) solvers such as CPLEX [27], in

other cases they fall behind [23, 24, 26]. Therefore, general purpose MIP solvers can be considered

as a good choice among the optimum solvers for CAP. For a detailed discussion about optimum

search techniques see [6].

The single unit combinatorial auction model provides economically efficient allocations when

the bidders are interested in bundles of items. However, they are inappropriate for situations where

multiple instances of items are auctioned. Since a bidder is not interested in a particular item, he

must bid separately to all combinations of the items he wants. For instance, if the bidder wants to

get 100 keyboards and 100 mice out of 200 keyboards and 300 mice in a single unit combinatorial

auction, he must bid

 200

100


 ·


 300

100


 times. The multi-unit combinatorial auction (MUCA) model

solves this problem by representing identical items as multiple units of a single item and allowing

bidders to bid on instances of the items [28, 29, 30, 31]. For further discussion on combinatorial

auctions, the reader is referred to [7].

If multiple instances of items are to be auctioned, the MUCA model provides efficient bid

representation. Although the substitutability problem between identical units of items is solved in

this model, possible substitutabilities between different items are not considered. If a bidder does

not differentiate two or more different items, the MUCA model becomes insufficient in representing

such preferences. As an example, assume that in the MUCA model the items to be auctioned are

two hundred wired PS/2 keyboards, four hundred wired USB keyboards, three hundred wireless

PS/2 keyboards and one hundred wireless USB keyboards. Consider the following two scenarios:

• A bidder wants to buy 100 PS/2 keyboards without differentiating wired and wireless models.

In order to express this preference, one dummy item must be introduced and

 2 + 100− 1

100


 = 101

bids must be placed.

• Likewise, if the bidder wants to buy 100 keyboards without differentiating any four keyboard

types, one dummy item must be introduced and

 4 + 100− 1

100


 = 176, 851 bids must be placed.

In order to overcome this inefficiency in preference expression, we propose a new auction model

5

called the multi-unit nondiscriminatory combinatorial auction (MUNCA) model. In this proposed

model, bidders may encode their preferences of substitutability into bids easily by declaring a list

of nondiscriminatory items. In the above example, the MUNCA model will enable the bidder to

express his preferences by placing only one bid in each of the above scenarios.

The rest of the paper will be organized as follows: In Section 2, the MUNCA model will be

defined and the winner determination problem of the MUNCA model will be formulated. Since the

MUNCA problem is known to be NP-hard (by a trivial reduction from independent set problem

[32]), two fast heuristic algorithms were developed in order to solve it. In Section 3, we present these

heuristic solvers as well as a linear relaxation based greedy heuristic solver and an optimum solver.

In order to estimate the performance of our solvers an artificial test case generator was developed.

Details of the generator can be found in Section 4. In Section 5, we present the performances of

our solvers on various tests.

2 Multi-Unit Nondiscriminatory Combinatorial Auction Model

In this section, we describe our multi-unit combinatorial auction model by first defining the MUNCA

problem formally and then presenting an integer programming (IP) formulation of this problem.

We were motivated to develop the MUNCA model in the context of the recently emerging grid

computing technologies. Grids will enable sharing of various resources such as computational

power, data and devices in the so called virtual organizations. Models for grid economies [33, 34]

are needed that will facilitate assignment of resources to interested parties in the grid. An auction

market is one of the models that is proposed for resource management and scheduling in grids. [35],

for example, proposes the use of combinatorial auctions for resource scheduling on the TeraGrid

[36] which is the world’s largest supercomputing grid. In the computer industry, there are also

planned and/or current practice of the use of auctions for resource allocation on grids [37, 38].

Since in grids, we can have multi-unit resources with different brands (the best example being the

presence of many processors from many different manufacturers), we were motivated to propose

the MUNCA model in this paper. Even though our own motivation for developing the MUNCA

model has originated from the grid computing field, we should note that application of this model

6

is not just confined to this field. It is also applicable to other industry examples that we mentioned

in Section 1. To exemplify our model, we present an example involving resource assignments in

grids at the end of this section.

2.1 Definition of the MUNCA Problem

Let R = {r1, r2, . . . , rm} be a set of m different items and let U = {u1, u2, . . . , um} be a set of units

of items where ui is the number of available identical units of the item ri (1 ≤ i ≤ m,ui ∈ Z+). Let

B = {b1, b2, . . . , bn} be a set of submitted bids. A bid consists of two parts: a list of subbids and

an offered price to be paid if the bid is satisfied. There is a logical AND relationship between the

subbids because a bid is satisfiable if all of its subbids are satisfiable. Similarly a subbid consists of

two parts, a set of substitutable items and requested quantity of instances from this set. There is a

logical OR relationship between the items in this set because a subbid is satisfiable if the requested

number of instances can be supplied from the items in any subset of this set. So if the size of this

set is more than one, it means that the bidder treats all of the listed items as equivalent.

Let v be the maximum number of subbids among all bids. Then, formally a bid bj = {(<sj1, qj1>,

<sj2, qj2> , . . . ,<sjtj , qjtj>), pj} is defined as a combination of subbids and an offered price pj where

sjk ⊆ R is the set of requested substitutable items and qjk is the requested quantity of instances for

the set sjk (1 ≤ j ≤ n, 1 ≤ k ≤ tj ≤ v, pj ∈ Z+). The MUNCA problem is defined as the problem

of finding a subset Bs of the bid set B and the corresponding allocation of items that maximizes

the sum of the offered prices of the bids in Bs while preserving the item quantity limits in U .

2.2 Integer Programming Formulation of the MUNCA Problem

In order to formulate this problem as an IP problem, two new variables x and y must be introduced.

In this formulation xj is a 0-1 integer variable that represents whether a bid is satisfied (1) or not

(0) and y
(i)
jk is a natural number that represents how many units of item i are taken by kth subbid

of bid j if it is satisfied (1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ v). Our formulation is given as:

7

maximize
n∑

j=1

pjxj (1)

subject to
n∑

j=1

v∑

k=1

y
(i)
jk ≤ ui (1 ≤ i ≤ m) (2)

(
m∑

i=1

y
(i)
jk)− qjkxj = 0 (1 ≤ j ≤ n, 1 ≤ k ≤ v) (3)

y
(i)
jk = 0 (1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ v, ri /∈ sjk) (4)

xj ∈ {0, 1} (1 ≤ j ≤ n) (5)

y
(i)
jk ∈ N (1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ v) (6)

In this formulation, the objective line in Equation 1 ensures that the maximum revenue is gained

from the auction. Equation 2 constrains the sum of the requested quantity of the item i by all

subbids with ui number of units of item i. Equation 3 constrains the sum of the quantities for

each item inside a subbid to be equal to the requested quantity in that subbid if bid j is satisfied,

otherwise y
(i)
jk values are cleared to 0. In this equation, it is also ensured that if a bid is satisfied,

then all the subbids inside that bid are also satisfied. In Equation 4, the y
(i)
jk value is set to 0 if the

item i is not requested by the kth subbid of the jth bid.

The MUNCA model supports OR-bids with dummy items like in the (OR∗) bidding language

[4, 39]. In this language, bidders can introduce dummy (phantom) items in their bids in order

to represent different preferences in the form of exclusive-or bids. In [39], it is proven that OR∗

bidding language is at least as powerful as OR, XOR, OR-of -XOR and XOR-of -OR bidding

languages.

2.3 MUNCA Problem Example

In order to make the definition and the formulation clear, we will present a simple MUNCA example

from Grid economy domain [32]. Assume that in a small computational grid, the following resources

are available for rental for a predefined period of time:

• 10 Intel workstations (intel)

8

• 10 AMD workstations (amd)

• 20 Sun workstations (sun)

• A license server with 5 MATLAB licenses (matlab) and 5 CPLEX licenses (cplex)

• 10 GB (in 1GB chunks) storage space in an external storage server (storage)

Given these resources, the first bidder requests 10 Intel workstations, 5 MATLAB licenses and 4

GB storage space for $1,000. The second bidder requests 10 workstations of any type and 5 CPLEX

licenses for $600 and the last bidder requests 30 workstations and 5 GB storage space for $1,500.

So for this scenario, R = {intel, amd, sun, matlab, cplex, storage}, U = {10, 10, 20, 5, 5, 10} and

the submitted bids are:

• b1 = {(<{intel}, 10>,<{matlab}, 5>,<{storage}, 4>), 1000}

• b2 = {(<{intel, amd}, 10>,<{cplex}, 5>), 600}

• b3 = {(<{intel, amd, sun}, 30>,<{storage}, 5>), 1500}

9

This example can be formulated as follows: (for simplicity we omitted variables and constraints if

y
(i)
jk = 0):

maximize 1000x1 + 600x2 + 1500x3

subject to y
(1)
11 + y

(1)
21 + y

(1)
31 ≤ 10

y
(2)
21 + y

(2)
31 ≤ 10

y
(3)
31 ≤ 20

y
(4)
12 ≤ 5

y
(5)
22 ≤ 5

y
(6)
13 + y

(6)
32 ≤ 10

y
(1)
11 − 10x1 = 0

y
(4)
12 − 5x1 = 0

y
(6)
13 − 4x1 = 0

y
(1)
21 + y

(2)
21 − 10x2 = 0

y
(5)
22 − 5x2 = 0

y
(1)
31 + y

(2)
31 + y

(3)
31 − 30x3 = 0

y
(6)
32 − 5x3 = 0

x1, x2, x3 ∈ {0, 1}

y
(i)
jk ∈ N (for all i, j, k)

3 MUNCA Problem Solvers

We have developed four MUNCA problem solvers:

(i) Optimum solver (OPT),

(ii) Linear relaxation based greedy heuristic solver (LRS),

(iii) Greedy heuristic solver based on price per unit criteria (PS) and

10

(iv) Enhanced heuristic solver based on price per unit criteria (EPS).

OPT solves the MUNCA problem optimally by calling the commercial CPLEX mixed integer

programming solver for the IP problem described in Section 2.2.

Linear relaxation based methods are widely used for bounding NP-hard problems because of

their simplicity and effectiveness. Although our main concerns and contributions in this work are

OPT, PS and EPS solvers, we include the solutions of the relaxed problem generated by CPLEX

and LRS in order to show how tight the linear relaxation based bounds for the MUNCA problem

are. The following sections describe the details of LRS, and the two price per unit criteria based

PS and EPS heuristics. The solver package can be downloaded from [40].

3.1 Linear Relaxation Based Greedy Heuristic Solver

LRS finds a feasible solution to the MUNCA problem by solving the linear relaxation of the IP

formulation and running a greedy heuristic based on the results of this solution. LRS algorithm

is based on the assumption that after solving the linear relaxation of the problem, bids with the

highest xj values are more likely to be in the optimum solution (Note that, in the relaxed problem,

xj is a continuous variable with xj ∈ [0, 1]). This algorithm consists of two phases: a ranking phase

and an allocation phase. In the ranking phase, linear relaxation of the problem is solved and then

the bids are sorted according to xj values in descending order.

In the allocation phase, we start by adding the first bid in the sorted list to an empty set of

winning bids and check whether the bid in the set is feasible or not. If it is feasible, we continue

adding the second bid in the list to the winning bids set. If it is not feasible, we remove the bid from

the set and then add the next bid. Then, we check the feasibility of the set again. The procedure

continues in this manner until all the bids in the sorted list are processed. After the end of the

procedure, the winning bid set is returned. The pseudocode for the LRS algorithm is presented in

Figure 1. checkFeasibility function will be explained in the following section.

11

3.2 Checking Feasibility of Given Bid Set

For all the presented greedy heuristics, checking the feasibility of a given set of bids is an essential

step. Unlike in the MUCA model, checking feasibility in the MUNCA model is not so trivial

because of the ORed items in the subbids. In order to check the feasibility of a given bid set

B = {b1, b2, . . . , bn}, the following set of equations must be solved,

n∑

j=1

v∑

k=1

yi
jk ≤ ui (1 ≤ i ≤ m)

(
m∑

i=1

yi
jk)− qjk = 0 (1 ≤ j ≤ n, 1 ≤ k ≤ v)

yi
jk = 0 (1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ v, ri /∈ sjk)

yi
jk ∈ N (1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ v)

We model this problem as a feasible network flow problem [41]. The network associated with this

model is shown in Figure 2. This network is constructed as follows: Let N(V, A, l, u, b) denote

our network with node set V , arc set A, lower bounds l(v, w) and upper bounds u(v, w) for each

arc (v, w) ∈ A, and source/demand values b(v) for each node v ∈ V . We begin constructing the

network for checking the feasibility by representing each bid bj as one node and drawing an arc

from a source node s, to the bid node bj with infinite upper bound u(s, bj) = +∞ and zero lower

bound l(s, bj) = 0 for 1 ≤ j ≤ n. Then, for each node bj with 1 ≤ j ≤ n, we introduce sjk nodes

with 1 ≤ k ≤ tj where tj is the number of subbids inside the bid bj , and draw the tj arcs (bj , sjk).

We impose fixed flow requirements of qjk on these arcs, i.e. u(bj , sjk) = l(bj , sjk) = qjk. These

arcs with fixed flow values ensure that each subbid gets the requested number of instances. After

that we add one node, ri , for each item in R (1 ≤ i ≤ m) and draw the arcs (sjk, ri) if item i is

requested in subbid k of bid bj . There are no flow constraints on these arcs, i.e., u(sjk, ri) = +∞
and l(sjk, ri) = 0. These arcs ensure that only requested items for each subbid are allocated by that

subbid. Finally, we add one arc from each item node ri to the sink node t with upper bound of ui

and lower bound of zero. This last set of arcs limits the number of units of items. Supply/demand

values for internal nodes are set to zero, i.e. b(v) = 0 for v ∈ V −{s, t}. Supply value for the source

12

node s is set as b(s) = qsum =
n∑

j=1

tj∑

k=1

qjk amount of flow and the demand value for the sink node t

is set to the negative of the supply of the source node, i.e., b(t) = −qsum.

If there is a feasible flow in the constructed network N , then we can conclude that a given set of

bids is also feasible. After solving this network flow problem, the amount of flow, fsjk,ri , between

nodes sjk and ri gives the y
(i)
jk values, i.e., (y(i)

jk = fsjk,ri).

3.3 Greedy Heuristic Solver Based on Price Per Unit Criteria

Like LRS, the PS algorithm is also based on greedy allocation of bids. However, this heuristic is

based on the assumption that the bids with high prices and small number of requested items are

most likely to be in the optimum solution. Combining these two criteria, the bids with higher price

per unit of items should be preferred. Therefore, for sorting bids, price per unit criteria is used

instead of linear relaxation solution.

This algorithm also consists of two phases: the ranking phase and the allocation phase. In the

ranking phase of the algorithm, we first calculate heuristic value of each bid j using the following

formula:

hj =
pj

tj∑

k=1

qjk

(7)

Then, we sort the bids according to these hj heuristic values in descending order. The rest of the

algorithm, i.e. the allocation phase, is the same as that of the LRS algorithm and is described in

Section 3.1. The pseudocode for the PS algorithm is presented in Figure 3.

3.4 Enhanced Heuristic Solver Based on Price Per Unit Criteria

In the PS algorithm, the bids with higher price per unit are favored. Price per unit is a general

criterion that can also be applied to other combinatorial auction types. It does not benefit from any

information specific to the MUNCA model such as the information related to the subbids of bids. In

the EPS heuristic, the assumption in the PS heuristic is extended so that the bids containing small

number of subbids but containing large number of items in their subbids are favored. To facilitate

this favoring, we change the ranking scheme by introducing two new factors called or factor and

13

and factor.

In the EPS algorithm, for each or factor (α) and and factor (β) pair, the heuristic values of

the bids are calculated using the new ranking formula:

hj =
pj

tj∑

k=1

(qjk · α|sjk|−1) · βtj−1

(8)

Assuming the or factor is less than one and the and factor is greater than one, the heuristic value

of the bid increases if the number of requested item types (|sjk|) is increased. In contrast, higher

number of subbids (tj) causes the heuristic value to decrease. The effects of the or factor and the

and factor increase geometrically with |sjk| and tj .

After the calculation of the heuristic values, the bids are sorted according to these values in

descending order and the allocation procedure is applied. Among the solutions found for each

or factor and and factor pair, the best solution is returned.

This algorithm increases the chance of finding better solution by changing the or factor and

the and factor in the range of [0.9, 1.1] with 0.05 increments. The ranges of [0.9, 1) and (1, 1.1]

for the or factor and the and factor respectively are for the instances for which the assumption

of EPS holds. The rest of the range, although it seems to contradict with the assumption of this

heuristic, is for the exceptional problem instances.

When the or factor and the and factor are set to 1, this algorithm gives the same result as

that of the PS algorithm. Therefore, the EPS heuristic is guaranteed to give better solutions than

the PS. The complexity of the algorithm is O(25 · CPS), where CPS is the complexity of the

PS algorithm. The pseudocode for the EPS heuristic is presented in Figure 4. As seen in this

algorithm, the body of the two nested for-loops are roughly the same as that of PS. Each of the

two for-loops is repeated 5 times, leading to 25 iterations that execute the body of the loops.

4 MUNCA Problem Test Case Generator

We were not able to locate any public real-world data that we could use in order to test our MUNCA

model. Therefore, we have coded a test case generator in order to prepare an artificial test suite

14

for measuring the performance of the algorithms. The generator is capable of producing test cases

for full-factorial testing in which all possible combinations of all factors can be tested. It supports

uniform, normal and exponential distribution types and uses GNU Scientific Library (GSL) [42] for

generating pseudo-random numbers.

The configuration parameters of the generator are:

• number of instances: defines how many set of instances will be generated,

• m : defines how many items will be generated,

• u : defines the number of units for each item,

• n : defines how many bids will be generated for each problem instance,

• t : defines how many subbids will be generated for each bid,

• s : defines the size of requested subset of items for each subbid,

• s jk method : defines the method for generating requested items for subbids,

• q : defines the requested number of items for each subbid inside all bids,

• or factor : defines the price factor for ORed item requests inside a subbid,

• and factor : defines the price factor for ANDed subbids inside a bid,

• price variance : defines the variance for calculating price.

The algorithm employed by the generator is straightforward and its source code can be obtained

from [40]. However, the method for determining the items inside a subbid and determining the

price of a bid needs further explanation.

There are two methods for generating requested items for subbids. The first method, (called

uniform random method), chooses items of subbids randomly from all available items. The second

method, (called neighborhood method), chooses the first item of a subbid randomly among all items

and chooses the remaining items from the neighbors (in terms of item index) of the chosen item.

For instance, let m = 10, and for a subbid let s = 5 and index of chosen item = 4, then the

15

list of requested items are {2,3,4,5,6}. The motivation for the neighborhood method is as follows:

Substitutable items are very likely to be indexed consecutively or closely. Since substitutable items

are also very likely to be chosen inside the subbids, then our method is justified for choosing items

from the neighbors of the chosen item. For instance, auctions containing items with different brands

and auctions for the resources in computational grid in which computers reside in a high bandwidth

network are indexed consecutively.

Assignment of proper prices for bids is quite important for generating realistic test cases. In

the generator, after determining the number of items, a uniform random number between 0 and 1

is chosen as the price of one unit of each item. In order to determine the price of a bid, we first find

the price of each subbid in the bid. Raw price of a subbid is determined by multiplying requested

quantity of items with the weighted average price of ORed items inside the subbid. In order to favor

substitutability between the items, we multiply the raw subbid price with α|sjk|−1 where α is the

or factor and |sjk| is the number of items inside the subbid. This produces the price of the subbid.

Then, we sum up the prices of subbids inside a bid and in order to disfavor complementarities

between subbids, we multiply this value with βtj−1 and produce the raw bid price where β is the

and factor and tj is the number of subbids inside the bid. Finally, we draw a normally distributed

random number with mean raw bid price, and standard deviation price variance. We assign this

number as the price of the bid. The pseudocode for determining the price of a bid is presented in

Figure 5.

5 Experimental Results

We have prepared a test suite that consists of 1692 problem instances based on uniform, normal

and exponential distributions. The problem instances are generated using 39 different configuration

files. In order to be able to compare the quality of heuristics with the optimum solution, small

to mid-size problem instances are generated. In the test suite, the number of items, m, varies

between 10 and 100 and the number of bids, n, varies between 50 and 500. The test suite and the

configuration files can be obtained from [40].

The tests are conducted using a dedicated AMD Athlon 64 3200+ based workstation with 1

16

gigabyte memory. For presenting quality of the heuristic solutions, goodness values relative to the

optimum solution is used. Goodness values of solutions for each configuration are calculated using

the following formula:

Solution Of Solver s for Distribution d

Optimum Solution for Distribution d
· 100 (9)

where s is either LRS, PS or EPS and d is either uniform, normal, or exponential. Running time

values are recorded using wall clock time in seconds. Maximum running time for the optimum

solver (CPLEX MIP solver) is set to 3 hours. For 1596 out of the 1692 instances, CPLEX finds

optimum solutions. For 93 cases, CPLEX finds integer feasible solutions which are not necessarily

optimal and for the remaining 3 instances, CPLEX cannot find any integer feasible solution in

3 hours. In this experiment, only the results of optimally solved instances are evaluated. The

mean goodness values and the corresponding standard deviations of the heuristic solvers can be

seen in Table 1. Also in this table, the solutions of the relaxed problem generated by CPLEX, i.e.

the upper bounds, are included in order to show how tight the linear relaxation based bounds for

MUNCA problem are. The running times of the solvers are presented in Table 2.

The linear relaxation based upper bounds for the test cases are approximately 15% higher than

the optimum solutions on average. It is observed that, for the instances generated using uniform

and normal distributions, the upper bounds are relatively tighter than the instances generated using

exponential distribution. Likewise the linear relaxation based solver, LRS, produces solutions 15%

lower than the optimum solutions. The distribution based results of LRS resemble the results of

linear relaxation based upper bounds. For uniform and normal distribution based instances, the

results are relatively better, with 7 to 10% loss on average, than the exponential distribution based

instances with approximately 25% loss.

Examining the goodness of the PS and EPS heuristics, average performance of the PS heuristic is

quite promising with 97% relative to the optimum solver with a standard deviation of approximately

4%. By the nature of its design, EPS heuristic is guaranteed to give results that are at least as

good as that of PS. It is observed that extra search done in EPS pays off and on average EPS

produces results better than 99% of the optimum. Corresponding standard deviation is less than

17

two per cent. Note that the distribution based performance of PS and EPS, unlike that of LRS,

are quite stable and do not differ considerably.

In terms of running times, the PS heuristic runs quite fast and finds solutions in 0.07 seconds

on average. As expected from the complexity analysis, the mean running time is 1.66 seconds with

standard deviation of less than 1 second. Comparing the running times of EPS and LRS, mean

running times of both heuristics are very close proving that EPS heuristic is not much slower than

the LRS heuristic. If we compare running times of the optimum solver and our heuristics in general,

we see that our heuristics are considerably faster than the optimum solver. Considering the fact

that our test instances were generally small sized, we can expect that for larger sized instances, the

running time performance of our heuristics and the optimum solver will widen even further.

6 Conclusion

In this paper, we have presented a new combinatorial auction model that extends the well-known

MUCA model. When bidders are indifferent to some items in the auction, the MUCA model

becomes inefficient in representing the preferences of the bidders. The MUNCA model overcomes

this inefficiency by allowing bidders to value any combination of items according to their preferences.

After defining the MUNCA model, we formulated the winner determination problem as an integer

program. Since this problem is a generalization the of the maximum independent set problem,

winner determination problem of the MUNCA model is NP-hard. Although most of the problem

instances of moderate size are solvable optimally by using general purpose MIP solvers, we developed

two fast greedy heuristic solvers, namely, the PS and the EPS algorithms for difficult problem

instances. Using artificial test data, the performances of these solvers were compared with the

optimum and the linear relaxation based heuristic solvers. Our two heuristic solvers, were able

to obtain quite good results in the tests with 97% and 99% average performance relative to the

optimum solution respectively.

18

References

[1] McAfee RP, McMillan J. Auctions and bidding. Journal of Economic Literature 1987;

25(2):699–738.

[2] Vickrey W. Counterspeculation, auctions, and competitive sealed tenders. The Journal of

Finance 1961;16(1):8–37.

[3] Krishna V. Auction theory. San Diego, CA, USA: Academic Press; 2002.

[4] Fujishima Y, Leyton-Brown K, Shoham Y. Taming the computational complexity of combi-

natorial auctions: Optimal and approximate approaches. In: IJCAI ’99: Proceedings of the

Sixteenth International Joint Conference on Artificial Intelligence. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc.; 1999. p. 548–553.

[5] Sandholm T. Algorithm for optimal winner determination in combinatorial auctions. Artificial

Intelligence 2002;135(1-2):1–54.

[6] Cramton P, Shoham Y, Steinberg R (Eds.). Combinatorial auctions. Cambridge, MA, USA:

MIT Press; 2006.

[7] de Vries S, Vohra RV. Combinatorial auctions: A survey. INFORMS Journal on Computing

2003;15(3):284–309.

[8] Jackson C. Technology for spectrum markets. Ph. D. thesis, Department of Electrical Engi-

neering, Massachusetts Institute of Technology, Cambridge, MA, USA; 1976.

[9] Rassenti SJ, Smith VL, Bulfin RL. A combinatorial auction mechanism for airport time slot

allocation. The Bell Journal of Economics 1982;13(2):402–417.

[10] Caplice CG. An optimization based bidding process: A new framework for shipper-carrier re-

lationships. Ph. D. thesis, Department of Civil and Environmental Engineering, Massachusetts

Institute of Technology, Cambridge, MA, USA; 1996.

[11] Ledyard JO, Olson M, Porter D, Swanson JA, Torma DP. The first use of a combined-value

auction for transportation services. Interfaces 2002;32(5):4–12.

19

[12] Sheffi Y. Combinatorial auctions in the procurement of transportation services. Interfaces

2004;34(4):245–252.

[13] Graves RL, Schrage L, Sankaran JK. An auction method for course registration. Interfaces

1993;23(5):81–92.

[14] Jones JL. Incompletely specified combinatorial auction: An alternative allocation mechanism

for business-to-business negotiations. Ph. D. thesis, Warrington College of Business Adminis-

tration, Univ. of Florida, Gainesville, FL, USA; 2000.

[15] The Federal Communications Commission website. URL: 〈http://www.fcc.gov/〉; 2007 (ac-

cessed on July 30, 2007).

[16] Cramton P. Spectrum auctions. In: Cave M, Majumdar S, Vogelsang I (Eds.), Handbook

of Telecommunications Economics. Amsterdam, The Netherlands: Elsevier Science; 2002. p.

605–639.

[17] McMillan J. Selling spectrum rights. Journal of Economic Perspectives 1994;8(3):145–162.

[18] Milgrom P. Putting auction theory to work: The simultaneous ascending auction. The Journal

of Political Economy 2000;108(2):245–272.

[19] Porter D, Rassenti S, Roopnarine A, Smith V. Combinatorial auction design. PNAS 2003;

100(19):11153–11157.

[20] Rothkopf MH, Pekeč A, Harstad RM. Computationally manageable combinational auctions.

Management Science 1998;44(8):1131–1147.

[21] Garey MR, Johnson DS. Computers and intractability: A guide to the theory of np-

completeness. San Francisco, CA, USA: WH Freeman and Co; 1979.

[22] Karp R. Reducibility among combinatorial problems. In: Miller R, Thatcher J (Eds.), Com-

plexity of Computer Computations. New York, NY, USA: Plenum Press; 1972. p. 85–103.

20

[23] Andersson A, Tenhunen M, Ygge F. Integer programming for combinatorial auction winner

determination. In: ICMAS ’00: Proceedings of the Fourth International Conference on Mul-

tiAgent Systems (ICMAS-2000). Washington, DC, USA: IEEE Computer Society; 2000. p.

39–46.

[24] Günlük O, Ladànyi L, de Vries S. A branch-and-price algorithm and new test problems for

spectrum auctions. Management Science 2005;51(3):391–406.

[25] Sandholm T, Suri S. Bob: Improved winner determination in combinatorial auctions and

generalizations. Artificial Intelligence 2003;145(1-2):33–58.

[26] Sandholm T, S Suri AG, Levine D. Cabob: A fast optimal algorithm for winner determination

in combinatorial auctions. Management Science 2005;51(3):374–390.

[27] ILOG CPLEX. URL: 〈http://www.ilog.com/products/cplex/〉; 2007 (accessed on July 30,

2007).

[28] Bartal Y, Gonen R, Nisan N. Incentive compatible multi unit combinatorial auctions. In:

TARK ’03: Proceedings of the 9th Conference on Theoretical Aspects of Rationality and

Knowledge. New York, NY, USA: ACM Press; 2003. p. 72–87.

[29] Gonen R, Lehmann D. Optimal solutions for multi-unit combinatorial auctions: Branch and

bound heuristics. In: EC ’00: Proceedings of the 2nd ACM Conference on Electronic Com-

merce. New York, NY, USA: ACM Press; 2000. p. 13–20.

[30] Leyton-Brown K, Shoham Y, Tennenholtz M. An algorithm for multi-unit combinatorial

auctions. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence

and Twelfth Conference on Innovative Applications of Artificial Intelligence. California, CA,

USA: AAAI Press / The MIT Press; 2000. p. 56–61.

[31] Sandholm T, Suri S, Gilpin A, Levine D. Winner determination in combinatorial auction

generalizations. In: AAMAS ’02: Proceedings of the first international joint conference on

Autonomous agents and multiagent systems. New York, NY, USA: ACM Press; 2002. p.

69–76.

21

[32] Özer AH. Combinatorial auction based resource co-allocation model for grids. M. Sc. thesis,

Computer Engineering Department, Boğaziçi University, Istanbul, Turkey; 2004.

[33] Buyya R, Abramson D, Venugopal S. The grid economy. In: Proceedings of the IEEE. New

York, NY, USA: IEEE; vol. 93, 2005. p. 698–714.

[34] Tan Z. Market-based grid resource allocation using a stable continuous double auction. Ph.

D. thesis, Department of Computer Science, University of Manchester, Manchester, UK; 2007.

[35] Harchol-Balter M. Auction based scheduling for the TeraGrid. URL:

〈http://www.cs.cmu.edu/∼harchol/〉; 2007 (accessed on July 30, 2007).

[36] TeraGrid. URL: 〈http://www.teragrid.org〉; 2007 (accessed on July 30, 2007).

[37] Sun opens processor auction house. URL: 〈http://theregister.co.uk/2005/02/03/sun grid two〉;
2005 (accessed on July 30, 2007).

[38] Tycoon: Market based resource allocation. URL: 〈http://www.hpl.hp.com/research/tycoon/〉;
2007 (accessed on July 30, 2007).

[39] Nisan N. Bidding and allocation in combinatorial auctions. In: EC ’00: Proceedings of the

2nd ACM conference on Electronic commerce. New York, NY, USA: ACM Press; 2000. p.

1–12.

[40] Software and supplementary materials for MUNCA problem.

URL: 〈http://www.cmpe.boun.edu.tr/∼ozer/pubs/munca/ alternatively

http://www.ahozer.com/en/pubs/munca/〉; 2007 (accessed on July 30, 2007).

[41] Ahuja RK, Magnanti TL, Orlin JB. Network flows: Theory, algorithms and applications. New

Jersey, NJ, USA: Prentice Hall; 1993.

[42] GNU Scientific Library. URL: 〈http://www.gnu.org/software/gsl/〉; 2007 (accessed on July

30, 2007).

22

Algorithm LRS
Input: MUNCA problem instance
Output: winningBids

/* Ranking Phase */
solve LP relaxation of MUNCA problem and get xj values for each bid
sort bids according to xj in descending order and store in orderedBids

/* Allocation Phase */
winningBids = ∅
for j = 0 to n− 1

add orderedBidsj to winningBids
if checkFeasibility(winningBids) = false then

remove orderedBidsj from winningBids
end for
return winningBids

Figure 1: The pseudocode for the LRS algorithm

23

b1

bn

s11

s1t1

sntn

sn1

r1

rm

(q
1t1

,q1t1
)

(qn1,qn1)

(q
ntn ,q

ntn)

(u
1 ,0)

m
,0

)

(u

[qsum]

11,q
11)

(q

[b] : Net flow generated at nodes
(u,l) : Upper and lower bound of arcs

[−qsum]

s t

(+
∞,0

)

(+∞
,0)

(+
∞,0)

(+∞
,0)

Figure 2: Network flow diagram for checking feasibility of bids

24

Algorithm PS
Input: MUNCA problem instance
Output: winningBids

/* Ranking Phase */
for each bid j

qSumj = 0
for each subbid k of bid j

qSumj = qSumj + qjk

end for
hj = pj

qSumj

end for
sort bids according to hj in descending order and store in orderedBids

/* Allocation Phase */
winningBids = ∅
for j = 0 to n− 1

add orderedBidsj to winningBids
if checkFeasibility(winningBids) = false then

remove orderedBidsj from winningBids
end for
return winningBids

Figure 3: The pseudocode for the PS algorithm

25

Algorithm EPS
Input: MUNCA problem instance
Output: maxBids

maxPrice = 0;
for β = 0.9 to 1.1 step 0.05 /* and factor */

for α = 0.9 to 1.1 step 0.05 /* or factor */

/* Ranking Phase */
for each bid j

qSumj = 0
for each subbid k of bid j

qSumj = qSumj + qjk · α|sjk|−1

end for
hj = pj

qSumj ·βtj−1

end for
sort bids according to hj in descending order and store

in orderedBids

/* Allocation Phase */
winningBids = ∅
for j = 0 to n− 1

add orderedBidsj to winningBids
if checkFeasibility(winningBids) = false then

remove orderedBidsj from winningBids
end for
if total price(winningBids) > maxPrice then

maxPrice = total price(winningBids)
maxBids = winningBids

end if
end for

end for
return maxBids

Figure 4: The pseudocode for the EPS algorithm

26

Price Determination Algorithm
Input: or factor, and factor, price variance
Output: price for given bid

for each resource type i
unitPricei = uniform(0, 1)

end for
for each bid j

bidPricej = 0
for each subbid k of bid j

subbidPricek = 0
for each resource type l in subbid k

subbidPricek = subbidPricek + qjk · unitPricel · (ul/
∑

z∈sjk
uz)

end for
subbidPricek = subbidPricek · α|sjk|−1

bidPricej = bidPricej + subbidPricek

end for
bidPricej = bidPricej · βtj−1

bidPricej = normal(µ = bidPricej , σ = (bidPricej · price variance/100))
end for

Figure 5: The pseudocode for determining the price of a bid

27

Table 1: Linear Relaxation Based Upper Bounds and Goodness Values of the Solvers Relative to
the Optimum Solutions (%)

Lin. Rel. Based
Upper Bound LRS PS EPS

Distribution # tests mean stdev mean stdev mean stdev mean stdev

Uniform 545 106.88 10.34 89.39 13.14 97.67 3.34 99.30 1.31
Normal 507 105.70 6.75 92.81 9.96 96.71 4.24 98.99 1.60

Exponential 544 130.35 39.79 75.26 21.76 97.15 4.37 99.05 1.72
Overall 1596 114.51 26.83 85.66 17.59 97.19 4.02 99.12 1.56

28

Table 2: Running times of the solvers (seconds)

OPT LRS PS EPS
Distribution mean stdev mean stdev mean stdev mean stdev

Uniform 288.57 930.35 1.44 2.02 0.07 0.03 1.59 0.91
Normal 515.31 1435.60 1.23 1.66 0.06 0.03 1.56 0.77

Exponential 207.72 758.45 1.88 2.03 0.07 0.04 1.82 0.97
Overall 333.04 1077.71 1.52 1.93 0.07 0.04 1.66 0.89

29

