
A Direct Barter Model for Course Add/Drop Process
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Abstract

Even though course timetabling and student scheduling problems have been studied exten-

sively, not much has been done for the optimization of student add/drop requests after the

initial registration period. Add/drop registrations are usually processed with a first come first

served policy. This, however, can introduce inefficiencies and dead-locks resulting in add/drop

requests that are not satisfied even though they can, in fact, be satisfied. We model the course

add/drop process as a direct bartering problem in which add/drop requests appear as bids. We

formulate the resulting problem as an integer linear program. We show that our problem can be

solved polynomially as a minimum cost flow network problem. In our model, we also introduce

a two-level weighting system that enables students to express priorities among their requests.

We demonstrate improvement in the satisfaction of students over the currently used model and

also the fast performance of our algorithms on various test cases based on real-life registration

data of our university.

Keywords: Add Drop; Student Registration; Bartering; Barter Network; Network Flow
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1 Introduction

In universities, course timetabling (CT), student scheduling (SS) and add/drop processes involve

the coordination of various resources and entities. CT basically deals with the allocation of time

slots and classrooms to courses by taking into consideration issues such as preferences of instructors

and classroom locations. Given a timetable, in SS phase, students select courses according to their

needs and preferences. Because of course and section quota restrictions or enrollment balancing

requirements among the sections, it is not possible to satisfy the needs and preferences of all the

students. Therefore, some policy or algorithm needs to be employed in SS phase for the assignment

of students to courses and sections. During the add/drop phase, a readjustment of the assignment

solution in SS phase basically takes place by the addition, dropping and swapping of courses and/or

sections. In the literature, phases CT and SS have been extensively studied (see, for example,

surveys [1–4]). Some approaches tackled either CT or SS exclusively. Some approaches coupled

these two phases and solved the combined course timetabling and student scheduling problem. In

this paper, our focus will be on the add/drop process. Not much has been done for this phase - we

are aware of only one work (that of Graves et al.’s [5]) that addresses the add/drop process. The

add/drop process has an important difference from that of CT and SS. A student may have been

already assigned to a seat in a course or section from SS phase and he may want to swap (barter)

this seat that he owns with another seat owned by other students in another course or section.

Hence, one can say that whereas CT and SS phases can be modeled as an assignment problem, for

add/drop process bartering is a more appropriate model.

We were motivated to develop a direct barter model for the add/drop process because of some

problems we noticed during add/drop periods at our Boğaziçi University. Since 1998, web based

online registration system has been used for course registration [6]. Before the beginning of each

semester, students are admitted to the system and are allowed to take courses if both prerequisites

of the courses are satisfied and the quotas of the courses permit. The system works on a first come

first served (FCFS) policy basis and at the beginning of each registration period, a race occurs

among students for popular courses. Generally, the quotas of the popular courses are filled within

the first few hours of online registration period. After the registration period, the semester begins
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and during the first week of the semester, students attend and evaluate their courses. At the end

of this week, add/drop period of one week begins and the students are allowed to change their

courses and/or sections of their courses. Because of the FCFS basis of the system and the quota

restrictions, when a student drops a course, he may not be able to take it again. This situation

forces a student who wants to change his course, to first try to add a new course, and then drop the

old course. Although this does not pose a problem if the quotas of the courses are not full, it does

pose a problem for the popular courses. It is observed in Boğaziçi University student registration

system that the current FCFS based system causes deadlock situations, and hence reduces the total

satisfaction of students. Although different implementations of FCFS approach exist in different

registration systems, all FCFS based systems are prone to the same problem. For instance, in

UniTime [7, 8], which is an open-source enterprise system for automated construction of course

timetables and student schedules, when a student wants to add a course which is not available, the

student is assigned to the wait-list of that course. Wait-lists are processed automatically in FCFS

manner as one seat becomes available for the corresponding course. Therefore, since a student

who wants to change his course cannot be sure whether he would be assigned to the new course,

he would not want to drop the course he has already assigned until he obtains a seat in the new

course. Thus, this would also lead to the same problem.

In order to increase the efficiency of add/drop process compared to the current FCFS based

system of our university, a direct barter model for the course add/drop process is proposed. The

objective of the model is to increase the total satisfaction of students while preserving fairness

among them. For this purpose, along with the usual add and drop requests, this model allows

students to barter the courses they want to drop for the courses they want to add. Students

express their requests through submitting multiple add, drop and barter bids and in each add and

barter bid, they can declare a set of alternative courses to be added. Besides, in this model, they

can indicate relative priorities of their bids and the courses they want to register for. For instance, if

a student prefers course A over course B, and course B over course C, he just declares A ≻ B ≻ C.

Furthermore, students can request the same course or the same set of courses in multiple bids and

can also declare restriction sets in which only one course can be added to the schedule.

In this paper, we contribute a formal development of the model. We present a network flow
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based algorithm that allows us to solve the problems in strongly polynomial time. We also compare

the solutions of our model with that of the FCFS approach based on real-world student registration

data and present the performance of our algorithms on various tests.

In the next section, we present an example with which we explain our model for the course

add/drop process. In Section 3, we formally define and formulate our model using integer program-

ming. Then, in Section 4 we present a minimum cost network flow solution of our problem and in

Section 5, we present the experimental results. A review of the related literature is given in Section

6. Finally, the paper is concluded in Section 7.

2 A Motivational Example and the Model

In this section we present an example scenario for add/drop process on which we explain our direct

barter model. Assume that during the registration period, students Ali, Mehmet, Ayşe and Aslı

have been registered for courses STS 401.01, SOC 101.01, ESC 301.01 and SOC 101.01 respectively.

Murat, on the other hand, has been registered for both STS 401.02 and PSY 101.01. Suppose that

during the add/drop period, the students declare add, drop, and barter bids as shown in Figure 1.

Bids 1-5 are examples of a barter bid. In a barter bid, the left hand side of the arrow indicates

the course to be dropped and the right hand side indicates the course to be added. A barter bid

as the name suggests enforces the student to drop the course on the left hand side if he adds the

new course on the right hand side. For instance, in bid 3 Ayşe wants to drop ESC 301.01 if she

could add SOC 101.01 to her course list. Bids 6 and 7 are examples of an add bid. An add bid

states that the student wants to add the course on the right hand side without dropping any other

course. Likewise, a drop bid, e.g. bid 8, states that the student wants to drop the course on the

left hand side without adding any other course.

Bids 1, 4 and 6 are different from the others in terms of having a request set of more than one

course on the right hand side. These bids are called multi-bids. A multi-barter bid states that the

student is indifferent, at least to some degree, to the set of requested courses and he is willing to

drop the course on the left hand side if he could add any one of the courses in this set. Similarly,

a multi-add bid states that the student wants to add any one of the courses in this set without
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dropping any other course. Since drop bids are not restricted with quota constraints, they should

always be satisfied. Therefore, we do not need to explicitly incorporate multi-drop bids in the

model.

Multi-bids can be considered as combinations of two or more single bids which are XOR’ed.

For instance, in bid 1, Ali wants to add either PSY 101.01 or STS 401.02 but not both and drop

STS 401.01 on the condition that his add request is satisfied. This bid can be represented as a

combination of two XOR’ed bids, STS 401.01 → {PSY 101.01} and STS 401.01 → {STS 401.02}.
Bid 1 is satisfied if exactly one of these bids is satisfied. By introducing multi-barter bids, without

losing generality, we can now safely assume that there are no two barter bids of a student that

have the same course on the left hand side since such bids can be combined and represented as

one multi-barter bid. In addition to the multi-barter bid mechanism, the model allows a student

to mark a barter bid (either single or multi-barter) as drop-unless-barter meaning that the student

wants to drop the course on the left hand side if bartering of this course for another course in the

request set is not possible. In the given example, it is indicated using a star above the arrow of the

bid 5. In this bid, Murat wants to barter PSY 101.01 for ESC 301.01 and if ESC 301.01 cannot

be added, Murat wants to drop PSY 101.01. Again, by further introducing drop-unless-barter

mechanism, drop and barter requests can be combined and again without losing generality, we can

state that there cannot be any two bids of a student that have the same course on the left hand

side.

The add/drop process based on the direct barter model is a batch process and consists of two

phases, a bid submission phase in which the students are allowed to submit bids to the system or

retract bids from the system and a solution phase in which the optimum solution is calculated.

Depending on the duration of the add/drop period, these phases can be repeated as many times

as necessary. For instance, for each day of the add/drop period, the bids can be collected from

the students throughout the day and the solution can be calculated at the end of the day and

announced to the students afterwards.
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Expressing Preferences - Weighted Model

Although the described unweighted model helps to increase the total satisfaction of students, it

can further be improved by assigning weights to the bids. In the weighted model, add, drop, and

barter bids are defined respectively as follows:

c∅
wi−−→ {(ai1, wi1), (ai2, wi2), . . . , (aip, wip)}

di
wi−−→ {(c∅, 0)}

di
wi−−→ {(ai1, wi1), (ai2, wi2), . . . , (aip, wip)}

where i is the index of the bid, wi is the weight of the bid i, and di is the course to be dropped. c∅

denotes the null course used for representing the course to be dropped or added for add and drop

bids respectively. In the weighted model, weights are assigned not only to the bids, but also to the

requested courses. Therefore, the request set contains tuples (aij , wij) where aij is the requested

course, wij is the associated weight, and p is the number of the requested courses.

By assigning weights to the bids and the requested courses, the model becomes more powerful in

the sense that it enables students to express their preferences inside the bids. For instance, weight

values can be assigned to a student’s bids indicating the degree of his preferences for his bids. The

weight of the most favored bid would be the highest and the least favored would be the lowest.

Likewise, for each multi-bid, weight values can also be assigned to the requested courses in the

request set if he is not totally indifferent to these courses. Considering the quota restrictions and

the submitted bids, among the possible courses in the request set, the one with the highest weight

would be added to the student’s course list. Besides the ability to express preferences among the

bids and the requested courses, the weighted model also enables favoring some students over others.

Special students such as graduating students can also be favored officially by their department by

increasing or maximizing the weights of their bids. This will ensure that if the quotas of the courses

are available then these students will be the first to add the courses they want. Similarly, using

the same mechanism, successful students, i.e. the students with higher grade point average (GPA),

can also be favored depending on the policy of the university.
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3 Formulation of the Model

The weighted direct barter model is formally defined as follows: let C = {c1, c2, . . . , cm} be the set

of m courses and Q = (qc1 , qc2 , . . . , qcm) be the tuple of remaining quotas where qck is the remaining

quota of course ck (1 ≤ k ≤ m, qck ∈ ℤ+ ∪ {0}). Let S = {s1, s2, . . . , st} be the set of t students.

We define Bl as the set of bids submitted by a student sl and the set of all bids, B, is defined

as B =
∪t

l=1Bl. Each bid is denoted by a triplet, bi = (di, wi, Ri), where di is the course to be

dropped for barter and drop bids or the null course, c∅, for add bids (di ∈ C ∪ {c∅}), wi ∈ ℝ+ is

the weight and Ri is the request set of the bid bi. The request set of a bid is either {(c∅, 0)} for

drop bids or a set of two tuples, Ri = {(ai1, wi1), (ai2, wi2), . . . , (aip, wip)}, for barter and add bids.

Each tuple (aij , wij) in Ri indicates the requested course, that is the course to be added, and the

associated weight respectively (aij ∈ C,wij ∈ ℝ+). Finally, the set D ⊆ B denotes the bids which

are marked as drop-unless-barter.

A bid bi is called satisfiable if at least one of the courses in the request set has one or more

remaining quota or there exists at least one satisfiable bid whose course to be dropped is in the

request set of bi. Formally, given bi = (di, wi, Ri) and bl = (dl, wl, Rl) the following predicate is true:

∀i(satisfiable (bi) ⇔ ∃j ((aij , wij) ∈ Ri ∧ ((qaij ∈ Q ∧ qaij > 0) ∨ ∃l (satisfiable (bl) ∧ dl = aij))))

By the definition, all drop bids are satisfiable. The objective of the model is to find the set of

satisfiable bids that maximizes the sum of the weights, that is the sum of both bid weights and

weights of the requested courses, and hence the total satisfaction of students.

In order to formulate the model using integer programming, two binary variables are introduced.

The binary decision variable x determines the satisfied bids and y determines the requested course

which is added if the corresponding bid is satisfied. Formally,

xi =

⎧
⎨
⎩

1, if bid i is satisfied

0, otherwise

and yij =

⎧
⎨
⎩

1, if course aij is added for bid i

0, otherwise

It should be noted that for a drop-unless-barter bid bi, the meaning of satisfaction is slightly

different. xi = 0 means that the student drops the course without adding any other course and

xi = 1 means that the student barters the course for another course. The integer programming

8



formulation of the model is as follows:

maximize
∑

∀i ∣ bi∈B
(wi xi + ® ⋅

∑

∀j ∣ (aij ,wij)∈Ri

wij yij) (1)

subject to

∑

∀i ∣ bi∈(B∖D)∧di=ck

xi −
∑

∀i,j ∣ bi∈B∧(aij ,wij)∈Ri∧aij=ck

yij ≥ −
⎛
⎝qck +

∑

∀i ∣ bi∈D∧di=ck

1

⎞
⎠ (∀k ∣ ck ∈ C)

(2)

xi −
∑

∀j ∣ (aij ,wij)∈Ri

yij = 0 (∀i ∣ bi ∈ B ∧Ri ∕= {(c∅, 0)}) (3)

xi = 1 (∀i ∣ bi ∈ B ∧Ri = {(c∅, 0)}) (4)

∑

∀i,j ∣ bi∈Bl∧(aij ,wij)∈Ri∧aij=ck

yij ≤ 1 (∀k, l ∣ ck ∈ C ∧ sl ∈ S) (5)

xi,yij ∈ {0, 1} (∀i, j) (6)

Note that in this formulation, the objective line in Eq.(1) maximizes the sum of the bid weights

and the weights of the courses in the request sets. In this equation, ® factor is a constant positive

number to be determined according to the actual weight values and the number of bids which is

described in the next section. Eq.(2) enforces quota restrictions of the courses. For each course,

the number of students dropping the course (including the drop and drop-unless-barter bids) plus

the remaining quota of the course should be greater than or equal to the number of students who

added the course. Eq.(3) expresses the satisfaction criterion: an add bid or a barter bid is satisfied

if exactly one of the courses in the request set is added. Eq.(4) ensures that all the drop bids are

satisfied. Finally, Eq.(5) prevents students from adding the same course to their schedule more

than once.

3.1 Determining the weight values and the ® factor

The main objective of the direct barter model is to increase the total satisfaction of students while

preserving fairness among them. In this section, we propose a method for defining the parameters

of the model, that are the weights of the bids, wi, the weights of the requested courses, wij , and
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the ® factor, in accordance with this objective.

In this method, each student, sl, is responsible for ranking his bids according to his preference

instead of defining the actual weights of the bids. Based on this ranking, he constructs his preference

list, a permutation of his bids sorted in descending order of his preference. Then, this preference list

is used as Bl, the set of bids submitted by the student sl. So, in the set Bl = {b(1)l , b
(2)
l , . . . , b

(u)
l },

the bid b
(1)
l is the most preferred bid with highest rank number of 1 and the bid b

(u)
l is the least

preferred bid with the lowest rank number of u (i.e. ∀l : b
(1)
l ≻ b

(2)
l ≻ . . . ≻ b

(u)
l ) . Note that,

for this definition we use a different indexing scheme for referring the bids in the set Bl in order

to prevent confusion with the indexing scheme for referring the bids in the bid set B. Subscript of

a bid denotes the owner of the bid and the superscript, which is the index number in the set Bl,

denotes the rank of the bid. We also denote the weight of a bid b
(r)
l with w

(r)
l . Given the ordered

set of bids Bl of the student sl, the weight of a bid b
(r)
l is defined as follows:

w
(r)
l = 2ℎ−r (∀ l, r ∣ b(r)l ∈ Bl) (7)

In this function, ℎ is the index of the lowest ranked bid among all the bids, and therefore the

minimum bid weight value, wmin is 1. This function ensures that the weights of the bids that

have the same rank among the students are equal and for each bid b
(r)
l ∈ Bl, the weight of the

bid is greater than the sum of the weights of the lower ranked bids in the same set. Therefore,

this bid weight function enables the model to satisfy as many higher ranked bids as possible while

preserving fairness among the students.

Defining the weight values for the requested courses is straightforward. As for the bids, each

student declares the courses in the request set such that the more preferred course comes before

the less preferred course (i.e. ∀i ∣ bi ∈ B : ai1 ≻ ai2 ≻ . . . ≻ aip). Since for each bid at most

one requested course can be added to the students schedule in the optimum solution, the only

requirement for weights of the requested courses is to ensure that the more preferred requested

course has higher weight value than that of the less preferred course. Therefore, the weight value
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of a requested course is simply defined as:

wij = m− j + 1 (∀ i ∣ bi ∈ B) (8)

where m is the number of courses (m = ∣C∣). This simple function ensures that the requested

courses with the same rank have equal positive weights among all the bids.

As seen from the objective function given in Eq.(1), there are two objectives of the model: the

first objective is to maximize the number of satisfied bids according to bid weight values and the

second objective is for each satisfied bid to add one requested course with the maximum possible

weight. In order to maximize the total satisfaction of students, the first objective is favored against

the second objective so that when finding the optimum solution among the feasible solutions, the

solution with the maximum sum of the bid weights is chosen as the optimum. However, if there

are multiple solutions with the same maximum sum of the bid weights, then the solution with the

maximum sum of the weights of the requested courses is chosen among these solutions. In order

to provide this feature, the ranges of these two types of weights should be separated in order to

cancel the effects of the latter to the former. For this purpose, a constant factor ® for scaling the

sum of the weights of the requested courses is introduced in the objective function. The ® factor

is defined as follows:

® =
1

(∣B∣ − 1) ⋅m (9)

The following proposition proves that using these weight functions and the ® value, the first

objective of the model is favored against the second objective.

Proposition 1. Given any two different feasible solutions with different sums of the bid weights for

the direct barter model, the solution with higher sum of the bid weights has higher objective value

according to Eq.(1) independent of weights of the requested courses.

Proof. Let B1 and B2 be two sets of satisfiable bids that correspond to any two feasible solutions
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for the direct barter model, and z1 and z2 be the corresponding objective values such that

z1 =
∑

∀i ∣ bi∈B1

⎛
⎝wi + ®

∑

∀j ∣ (aij ,wij)∈Ri∧yij=1

wij

⎞
⎠ and z2 =

∑

∀i ∣ bi∈B2

⎛
⎝wi + ®

∑

∀j ∣ (aij ,wij)∈Ri∧yij=1

wij

⎞
⎠

(10)

We will show that if the sum of the bid weights of the B1 is greater than the sum of the bid weights

of the B2, then the objective value z1 is always greater than the objective value z2. Therefore,

we will be proving that for any two feasible solutions, the solution with the higher sum of the bid

weights has higher objective value independent of the sum of the weights of the requested courses.

Suppose that the sum of the bid weights of the B1 is greater than the sum of the bid weights

of the B2,
∑

∀i ∣ bi∈B1

wi >
∑

∀i ∣ bi∈B2

wi (11)

The difference between the sums of the bid weights of B1 and B2 is

⎛
⎝ ∑

∀i ∣ bi∈B1

wi −
∑

∀i ∣ bi∈B2

wi

⎞
⎠ = 2k (k ∈ ℤ+ ∪ {0}) (12)

Then, the difference between the objective values z1 and z2 is

z1 − z2 = 2k + ® ⋅
⎛
⎝ ∑

∀i ∣ bi∈B1

∑

∀j ∣ (aij ,wij)∈Ri∧yij=1

wij −
∑

∀i ∣ bi∈B2

∑

∀j ∣ (aij ,wij)∈Ri∧yij=1

wij

⎞
⎠ (13)

Since exactly one requested course is added for each satisfied bid, the lower bound for the sum of

the requested course weights of B1 is

∑

∀i ∣ bi∈B1

∑

∀j ∣ (aij ,wij)∈Ri∧yij=1

wij ≥ min
i,j

wij = 1 (14)

Because of the conditional proof assumption in Eq.(11), B1 cannot be a subset of B2, and therefore

the upper bound for the sum of the requested course weights of B2 is

∑

∀i ∣ bi∈B2

∑

∀j ∣ (aij ,wij)∈Ri∧yij=1

wij ≤ (∣B∣ − 1) ⋅max
i,j

wij = (∣B∣ − 1) ⋅m (15)
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Therefore,

⎛
⎝ ∑

∀i ∣ bi∈B1

∑

∀j ∣ (aij ,wij)∈Ri∧yij=1

wij −
∑

∀i ∣ bi∈B2

∑

∀j ∣ (aij ,wij)∈Ri∧yij=1

wij

⎞
⎠ ≥ 1− (∣B∣ − 1) ⋅m (16)

Using ® = 1/(∣B∣ − 1) ⋅m, the smallest difference between the objective values is:

z1 − z2 ≥ 20 +
1

(∣B∣ − 1) ⋅m ⋅ [1− (∣B∣ − 1) ⋅m] (17)

z1 − z2 ≥ 1

(∣B∣ − 1) ⋅m (18)

z1 − z2 ≥ 0 (19)

Therefore, the solution with the higher sum of the bid weights has higher objective value indepen-

dent of the sum of the weights of the requested courses.

In general, as the number of courses with remaining quotas increases, the number of solutions

with identical values in the first summand of the objective function is likely to increase. The reason

is that for satisfiable bids there will be more than one alternative requested course that can be

added. Hence, the weight mechanism for the requested courses and ® factor mechanism will play

an important role for increasing the satisfaction of students in these cases by enabling their favored

courses to be added to their schedule.

4 Solution Procedure

Since the direct barter model can be formulated using integer programming, its problem instances

can be solved using general purpose integer programming solvers. However, resemblance of this

model to the used car salesman problem (UCSP) in [9] and the polynomial time barter models

in [10, 11] motivated us to search for a network flow based solution. Because of the bid weights

and the recursive definition of bid satisfiability that causes circular patterns in the solution like

UCSP, we modeled the direct barter problem as a minimum cost flow problem [12]. The minimum

cost flow problem is defined as follows: let N(V,A, l, u, c, b) denote a network with node set V ,
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arc set A, lower bound l(v, w), capacity u(v, w), cost c(v, w) values for each arc (v, w) ∈ A, and

supply/demand values b(v) for each node v ∈ V . Let x(v, w) represent the flow on arc (v, w) ∈ A.

The minimum cost flow problem is defined as follows:

Minimize
∑

∀v,w ∣ (v,w)∈A
c(v, w) ⋅ x(v, w) (20)

s.t.
∑

∀w ∣ (v,w)∈A
x(v, w) −

∑

∀w ∣ (w,v)∈A
x(w, v) = b(v) (∀v ∣ v ∈ V ) (21)

l(v, w) ≤ x(v, w) ≤ u(v, w) (∀v, w ∣ (v, w) ∈ A) (22)

where
∑

∀v ∣ v∈V b(v) = 0.

To help us in defining the network in our problem formally, we first introduce a set P , called

restriction-pairs set, which consists of course-student pairs. The set P is defined as follows:

P = {(ck, sl)∣ck ∈ C ∧ sl ∈ S ∧ (∃i, i′, j, j′ ∣ i ∕= i′ ∧ bi, bi′ ∈ Bl ∧ (ck, wij) ∈ Ri ∧ (ck, wi′j′) ∈ Ri′)}

Thus, each pair (ck, sl) in P indicates that the student sl requests the course ck in his at least

two different bids, and therefore the student sl must be prevented from adding the course ck more

than once in the final solution. Based on this definition, the minimum cost flow network can be

constructed as follows:

∙ The set of nodes, V , consists of four types of nodes:

(i) a course node ck for each course ck ∈ C,

(ii) a special node CENTER that represents the null course to be dropped for add bids,

(iii) a bid node bi for each bid bi ∈ B,

(iv) a restriction node rkl for each (ck, sl) ∈ P for preventing the student sl from adding the

course ck more than once.

∙ The set of arcs, A, consists of seven types of arcs:

(i) an arc (ck, CENTER) for each course ck ∈ C with capacity equal to qck and cost equal

to 0 which represents the remaining quota of the course ck,
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(ii) an arc (CENTER, ck) for each course ck ∈ C with capacity equal to +∞ and cost equal

to ²,

(iii) an arc (di, bi) for each barter and drop-unless-barter bid bi = (di, wi, Ri) with capacity

equal to 1 and cost equal to −wi,

(iv) an arc (CENTER, bi) for each add bid bi = (c∅, wi, Ri) with capacity equal to 1 and

cost equal to −wi,

(v) for each course ck ∈ C and for each student sl ∈ S such that (ck, sl) ∈ P :

(a) an arc (bi, rkl) for each bid bi = (di, wi, Ri) ∈ Bl if there exists a tuple (ck, wij) ∈ Ri

with capacity equal to 1 and cost equal to −® ⋅wij , (i.e. ∀i, j, k, l ∣ sl ∈ S ∧ ck ∈ C ∧ bi ∈
Bl ∧ (aij , wij) ∈ Ri ∧ ck = aij ∧ (ck, sl) ∈ P : an arc (bi, rkl)),

(b) an arc (rkl, ck) with capacity equal to 1 and cost equal to 0, (i.e. ∀k, l ∣ sl ∈ S ∧ ck ∈
C ∧ (ck, sl) ∈ P : an arc (rkl, ck)),

(vi) for each course ck ∈ C and for each student sl ∈ S such that (ck, sl) /∈ P :

(a) an arc (bi, ck) for each bid bi = (di, wi, Ri) ∈ Bl if there exists a tuple (ck, wij) ∈ Ri

with capacity equal to 1 and cost equal to −® ⋅wij , (i.e. ∀i, j, k, l ∣ sl ∈ S ∧ ck ∈ C ∧ bi ∈
Bl ∧ (aij , wij) ∈ Ri ∧ ck = aij ∧ (ck, sl) /∈ P : an arc (bi, ck))

(vii) an arc (bi, CENTER) for each drop-unless-barter bid bi ∈ D with capacity equal to 1

and cost equal to wi.

Lower bounds l(v, w) for all arcs (v, w) ∈ A are set to 0. Similarly, there is no supply or demand

for any node in the network, and therefore b(v) = 0 for every node v ∈ V . Note that ² which is

used as the cost of the arcs of type (ii) is the smallest possible positive number representable on

the computer. It is used to prevent zero cost cycles.

The minimum cost flow network for the example problem given in Section 2 and its solution

can be seen in Figure 2. As stated earlier, all drop bids should always be satisfied and since they

are always part of the solution, they need not to be included in the network. Therefore, before

constructing the network, as a preprocessing step all drop bids are marked as satisfied and the

remaining quotas of the courses are increased accordingly. For instance, if there are z drop bids for
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the course ck, after satisfying these bids the remaining quota of the course becomes qck + z. So,

when presenting the network, we assume that there will be no drop bids in the bid set B and the

set of remaining quotas Q is adjusted accordingly. This simple preprocessing step eliminates drop

bids and reduces the network size. Therefore, for the example problem, the drop bid 8 is marked

as satisfied beforehand and the quota of the course SOC 101.01 is increased by one.

Verifying the correctness of the described network is straightforward. The arcs of type (iii)

and (iv) represent the binary decision variables xi for barter and add bids respectively. Therefore,

additive inverses of the bid weights, −wi, are used as the costs of these arcs. This statement is also

valid for the drop-unless-barter bids on condition that there is no flow on the corresponding arc

of type (vii). However, if there is a flow passing through both the arc of type (iii) and the arc of

type (vii) for a drop-unless-barter bid, this means that only the drop part of the bid is satisfied.

In this case, this bid is considered as unsatisfied in accordance with the IP formulation in Section

3 and the sum of the costs of the corresponding arcs of type (iii) and (vii) are zero. As in the

case of the bid weights, additive inverses of the weights of the requested courses, −® ⋅ wij , are

used as the costs of type (v.a) and (vi.a) arcs that represent binary decision variables yij . Costs

of the other arcs are zero. Therefore, minimization of the cost yields maximization of the sum of

the weights. In order to satisfy a bid, one unit of flow must flow from the node representing the

course to be dropped (for add bids, from the center node) to the node representing the course to

be added. The capacity limits on type (iii) and (iv) arcs ensure that only one of the requested

courses is added for each satisfied bid. Also, the capacity limits on type (v.b) arcs prevent students

from registering for a course more than once. The arcs of type (i) represent the remaining quotas

of the respective courses and type (ii) arcs allow satisfaction of barter bids when the courses to be

dropped are not requested by any other satisfied bid. Finally, the arcs of type (vii) allow barter

bids which are marked as drop-unless-barter to drop the course if the bartering is not possible.

Quota restrictions of the courses are enforced using the flow conservation property of the network

nodes ck that correspond to the courses. Outgoing flow from a course node is restricted with the

remaining quota (adjusted value according to the drop bids in the preprocessing step) plus the

number of satisfied bids that drop the course.

When the minimum cost flow is found on the network, winning bids can be determined by
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checking flow on arc types (iii) and (iv) for barter and add bids respectively. If the flow on an

arc of these types is 1, it shows that corresponding barter or add bid is satisfied and it is in the

optimum solution. Similarly, the arc of type (v.a) or (vi.a) that originates from the winning bid

determines the course to be added for that bid. Since there can only be one arc with 1 unit of flow

among these arcs, the head of this arc shows the course to be added for the winning bid.

There are strongly polynomial algorithms for solving minimum cost network flow problems such

as the minimum mean cycle-canceling algorithm with time complexity O(∣V ∣2∣A∣3log∣V ∣) [13] and
the enhanced capacity scaling algorithm with time complexity O((∣A∣log∣V ∣)(∣A∣+ ∣V ∣log∣V ∣)) [12].
Since the minimum cost flow network for a direct barter problem instance can be constructed in

polynomial time using the above algorithm, the optimum solution of the direct barter problem can

also be found in polynomial time and hence the IP formulation given in Section 3 is in P.

Extending the functionality of the restriction nodes

The function of the restriction nodes in the network is to prevent a student from registering the same

course more than once. However, the function of the these nodes can be extended so that instead

of a single course, any number of disjoint course restriction sets can be defined for each student

such that the student can register for at most one of the courses in this set. This is especially useful

when a student requests more than one section of the same course or a set of conflicting courses in

his at least two bids. For instance, assume that a student submits the following bids:

CMPE 250.01
w1−−→{(CMPE 220.01,w11),(CMPE 230.01,w12),(CMPE 230.02,w13)}

CMPE 240.01
w2−−→{(CMPE 230.01,w21),(CMPE 230.02,w22),(CMPE 322.01,w23)}

It is clear that the student cannot register for two different sections of CMPE 230 at the same

time. Therefore, in order enforce this restriction, we define a course restriction set that consists of

restricted courses CMPE 230.01 and 230.02. Instead of using separate restriction nodes for these

restricted courses, a split restriction node pair is introduced for this set as shown in Figure 3. Then,

for each bid of the student that requests at least one of the courses in this set, an arc is drawn

from the corresponding bid node to the first node of the pair. The capacity of this arc is set to 1
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and the cost of this arc is set to the additive inverse of the weight of the highest ranked restricted

course in the bid. Additionally, an arc is drawn between the pair nodes with one unit of capacity

and zero cost. This arc limits the number of restricted courses to be added to one. Finally, for each

restricted course, an arc is drawn from the second node of the pair to the corresponding course

node with a capacity of 1 and cost of 0. This procedure is repeated by introducing a restriction

node pair for each course restriction set defined.

5 Experimental Results

In order to estimate the real-world performance and the quality of the solutions of our barter model,

we developed a test case generator based on real-world student registration data obtained from the

Boğaziçi University registration system [6] for the academic year 2008-2009. Since the number of

students in our university is relatively small, that is 7095, we generated a statistical profile using

the actual registration data and determined the parameters of the test case generator accordingly

so that it is capable of generating test cases for arbitrary number of students. The parameters of

the test case generator and its source code can be found in [14].

We conducted two different experiments on a dedicated 64 bit Intel Xeon 2.66 GHz workstation

with 8 GB memory using Linux operating system. We used CS2 software which contains a solver

for the minimum cost flow problems based on scaling push-relabel algorithm [15, 16].

In the first experiment, a group of 20 test cases are generated for each selected number of

students ranging between 7095 and 100,000. The average running time of the network solver for

each group and the corresponding standard deviation are presented in Table 1 and the associated

plot is depicted in Figure 4. As seen from the results, the solver finds the solution of the problem

instances with 100,000 students and approximately 320,000 bids in less than 21 seconds which is

quite small. For the case of our university, on the other hand, each instance is solved in less than

one second.

In the second experiment, the solutions of our barter model are compared with the currently

used FCFS based system. The purpose of this experiment is to present the improvement in the

optimum solutions of the test cases over the FCFS approach under different occupancy rates for the
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courses. Thus, the importance of the introduced bartering mechanism and the weighting mechanism

could be observed. In order to simulate the FCFS system, a random permutation of the bids in

each test case is generated by preserving the preferred order of bids of each student. The bids in

the permuted list are processed one by one, simulating the way the students submit the bids to

the registration system. The processing step is straightforward; for each bid, the remaining quotas

of the courses in the request set is checked in the order of students’ preferences and if one empty

slot is found, the course is added to the schedule of the student. If the processed bid is a barter

bid, then the course to be dropped is also removed from his schedule and the remaining quota of

that course is increased by one. The whole simulation process is repeated up to five times for the

unsatisfied bids.

The second experiment is conducted for two different numbers of students, that is 7095 and

50,000, where the number of courses are 1158 and 8160 respectively, For each number of students,

the ratio of the courses without remaining quota to the number of all courses, called p, is varied

between 0.20 and 0.99 meaning that approximately (100 ⋅ p)% of the courses have no remaining

quota. For each configuration, again a group of 20 test cases are generated. The results of this

experiment are given in Table 2.

For the test cases with 7095 students, assuming that 20% of the courses are full, the number of

satisfied bids in the solution found by the barter model is approximately 12% higher than that of the

FCFS based system. For the case of our university where approximately 28% of the courses are full,

the barter model provides 15% better results. It is remarkable that the improvement percentage for

the number of satisfied bids increases exponentially as p increases. In the extreme situation where

the courses are 99% full, approximately 2800% improvement over the FCFS system is observed. It

should also be noted that in the barter model the standard deviations are also very small relative

to the mean values so that the quality of the solutions found do not vary much. The results of

the test cases with 50,000 students are also very close to the test cases with 7095 students showing

that the model is scalable to the universities with higher number of students without sacrificing

the quality of the solutions.

By virtue of the weighting mechanism, the barter model also improves fairness among the

students by increasing not only the number of satisfied bids but also the number of satisfied students.
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As seen from the plot in Figure 5, the number of satisfied students in the barter model whose at

least one bid is satisfied is approximately 96% of the total number of students and decreases slightly

to 93% as p goes to 0.99. However, in the FCFS model, starting from 95%, this ratio drops to 7%.

6 Previous Work

As stated earlier, the CT and SS problems have been covered extensively in the literature. Some

studies have addressed solely the CT problem; several integer linear programming [17–19] models

and heuristic methods [17, 18, 20] have been proposed. For the SS problem, Reeves et al. [21] and

Willoughby et al. [22] have proposed a mixed integer and network programming models respectively,

and Alvarez-Valdes et al. [23] has applied Tabu search techniques. In [24, 25], on the other hand,

unified optimization models that address both problems are presented. There are also open source

(for example [8]) and commercial packages (for example [26]) that address these problems. For

further details on these problems, the reader is referred to surveys by Burke et al. [1], Carter et al.

[2], Lewis [3] and Schaerf [4].

In the remaining of this section, we first review Graves et al.’s work [5] in detail which has

addressed the student course add/drop process as we do in this paper. Then, in Section 6.2, we

discuss the relationship between our model and a somewhat related problem called the stable college

admissions problem (SCAP) [27, 28].

6.1 Relationship Between Graves et al.’s Work and the Barter Model

Graves et al. [5] propose an auction based market approach complete with clearing prices for

allocating course sections to students. Their model consists of two rounds. In the first registration

round, which is called registration bidding system (RBS), students are granted bidding points (i.e.

registration money) which they can use to bid on desired schedules. During this period, students

are allowed to place course selections as their bids together with the money they will pay for each

schedule. The bids are ranked in descending order of bidding points and are selected if requested

course capacities are available. At the end of the registration period, the prices of the courses

are determined. Each successful bidder pays the sum of the prices of the assigned courses to him
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instead of the price he offered for his bid. Therefore, it is possible that a successful bidder may not

have enough money in which case a subsidy given by the system covers the deficiency. Subsidies

not paid back during add/drop phase as a result of dropping courses are simply forgotten (waived)

by the system. Hence, we believe that if this fact is known by the students, then it could easily

be abused by offering high prices for their schedules. Since the winning bids can be subsidized and

the subsidized amounts can be forgotten, this then introduces fairness problems in Graves et al.’s

approach.

In the second round, which is called drop/add/swap (DAS) round, Graves et al. introduce a

course swapping idea. This corresponds to the barter scheme that we propose in this paper. As

in the RBS round, an auction based approach is used. Students submit add, drop and swap bids

together with the amounts of bidding points that are carried forward from the RBS round (if any).

After the end of the round, a linear program whose objective is to maximize the sum of the bidding

points of the satisfied bids is solved. By solving the linear program, the students are assigned to the

courses and also the prices of the courses in terms of bidding points (dual prices) are determined.

As in the registration round, each student pays the actual amounts of his satisfied bids calculated

according to the determined prices of the courses. However, in this case it is stated that subsidies

are not allowed. Since there is no formal treatment for this problem except for a simple linear

programming example, it is not clear how the restriction for preventing the subsidies is applied in

their model. This also prevents one from implementing their model. Although, by the definition

of dual prices, the actual amount to be paid for each satisfied bid is bounded by the offered price

for that bid, this does not solve the subsidy problem since each student may submit more than

one bid. Thus, a further constraint is necessary. In fact, the following proposition shows that

introducing a budget constraint in order to prevent subsidies, i.e. the sum of the bidding points of

the satisfied bids of a student should be less than or equal to the amount of bidding points owned

by that student, to the given linear programming example makes the resulting problem NP-hard.

It should be noted that the formal definition of the DAS problem given below is constructed by us

according to the linear programming example and the explanations given in [5].

Proposition 2. The decision version of the DAS problem with budget constraint is NP-complete.
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Proof. Let Π be the decision version of the DAS problem with budget constraint. Π is defined as

follows: Given

∙ a set of courses, C = {c1, c2, . . . , cm};

∙ a sequence of remaining quotas, Q = {qc1 , qc2 , . . . , qcm} where qck is the remaining quota of

course ck (1 ≤ k ≤ m, qck ∈ ℤ+ ∪ {0});

∙ a set of students, S = {s1, s2, . . . , st};

∙ a set of bids, B =
∪t

l=1Bl where Bl is the set of bids of a student sl (1 ≤ l ≤ t) and each bid

is denoted by a triplet, bi = (di, ai, pi), where di is the course to be dropped for barter and

drop bids or the null course, c∅, for add bids (di ∈ C ∪ {c∅}), ai is the course to be added for

barter and add bids or the null course, c∅, for drop bids (ai ∈ C ∪{c∅}), and pi is the amount

of bidding points offered by the student for bid bi (1 ≤ i ≤ n = ∣B∣ , pi ∈ ℤ+ ∪ {0});

∙ a set of bid restrictions, L = {l1, l2, . . . , lz} that consists of mutually disjoint subsets of bids,

ly ⊆ B (1 ≤ y ≤ z), such that at most one of the bids in ly can be satisfied (e.g. a student

may put a restriction on two of his add bids so that only one of them can be satisfied or the

system may enforce a restriction on two barter bids of a student in which the same course is

dropped);

∙ a sequence of bidding points owned by students, F = {f1, f2, . . . , ft} where fl is the amount

of bidding points owned by student sl (1 ≤ l ≤ t, fl ∈ ℤ+ ∪ {0});

∙ a positive integer K;

is there a subset B′ ⊆ B such that the following inequalities are satisfied?

22



∑

∀i ∣ bi∈B′
pi ≥ K (23)

∑

∀i ∣ bi∈(Bl∩B′)

pi ≤ fl (∀l ∣ sl ∈ S) (24)

∑

∀i ∣ bi∈B′∧ai=ck

1−
∑

∀i ∣ bi∈B′∧di=ck

1 ≤ qck (∀k ∣ ck ∈ C) (25)

∑

∀i ∣ bi∈(ly∩B′)

1 ≤ 1 (∀y ∣ ly ∈ L) (26)

In this formulation, Eq.(23) ensures that the sum of the offered bidding points for all satisfied

bids (B′) is greater than or equal to the positive integer K. Eq.(24) is the budget constraint which

prevents the sum of the bidding points of the satisfied bids of a student from exceeding the amount

of bidding points owned by that student. The quota restrictions are enforced in Eq.(25). For each

course, the number of students who drop the course plus the remaining quota of the course should

be greater than or equal to the number of students who add the course. Finally, Eq.(26) ensures

that bid restrictions are applied such that for all y (1 ≤ y ≤ z), at most one of the bids in ly ∈ L

is satisfied.

If we have a certificate that consists of B′ ⊆ B, this certificate can be verified in polynomial

time by checking Eq. (23-26). Therefore Π is in NP .

Next, we present a polynomial time transformation from the subset sum problem. Let Π′ be

the subset sum problem (see for example: [29, p. 73] and [30, p. 247]) which is defined as follows:

Given a finite set U , a weight value w(ui) ∈ ℤ+ for each ui ∈ U (1 ≤ i ≤ ∣U ∣) , and positive integers

C and K, is there a subset U ′ ⊆ U such that

∑

∀i ∣ui∈U ′
w(ui) ≥ K (27)

∑

∀i ∣ui∈U ′
w(ui) ≤ C (28)

Let Π′(U,w(ui), C,K) be an instance of the subset sum problem. It can be transformed to Π in
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polynomial time as follows: let the set of courses C consist of ∣U ∣ courses (C = {c1, c2, . . . , c∣U ∣})
and the remaining quotas of all the courses be 1 (qck = 1, k = 1, 2, . . . , ∣U ∣). The students set

S consists of 1 student (S = {s1}) and for each ui ∈ U , the student s1 submits an add bid bi

requesting the course ci with a price of w(ui) (i = 1, 2, . . . , ∣U ∣). The amount of bidding points of

the student s1 is C (F = {C}). Let the set of bid restrictions, L, be empty. Since in each bid

exactly one unique course is requested and the remaining quotas of all the courses are 1, Eq. (25)

always holds independent of the set B′. Thus, for the transformed problem instances, Eq. (23-26)

reduce to the inequalities of the subset sum problem:

∑

∀i ∣ bi∈B′
w(ui) ≥ K (29)

∑

∀i ∣ bi∈B′
w(ui) ≤ C (30)

and therefore, the solution of a problem instance of Π is also the solution of the corresponding

problem instance of Π′, and the solution of a problem instance of Π′ is also the solution of the

problem instance of Π.

Since Π is in NP and the subset sum problem is NP-complete, the decision version of the DAS

problem with dynamic credit constraint is NP-complete.

Besides the subsidy and the associated unfairness problems in Graves et al. approach, students

are also responsible for deciding the prices of the bids according to certain upper and lower bounds.

However, determining the prices can be cumbersome for the students because of the combinatorial

nature of the model. Furthermore, since the remaining points of the students are transferred to

the next semester, decision making will become tougher since the students should also consider the

following semesters. Finally, we note that although the students’ perception of the quality of their

schedules is not quantified, Graves et al. estimate one percent increase in the quality of schedules

using their model.
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6.2 Relationship with the Stable University Admissions Problem

The preference based ordering of bids and requested courses indicates a relationship between the

direct barter model and the stable college admissions problem (SCAP) [27, 28]. In the SCAP, there

are two sets of agents, colleges and students. Each college has strict preferences over the students

and can accept a limited number of students. Each student, on the other hand, can enroll to only

one college and has also strict preferences over the colleges. The SCAP is defined as finding a

matching of students to colleges, called a stable allocation, such that no unmatched pair of opposite

agents would simultaneously be better off if they were matched together.

In general, the SCAP cannot be used to solve our barter model. However, if we consider a

simple special case of our model in which only add bids are allowed and the weights of the bids are

unique, then this simple problem can be reduced to the SCAP as follows1: let the set of bids B

and the set of courses C in our barter model map to the row agents I (students), and the column

agents J (colleges) in [28] respectively. The function ¼(i, j) in the SCAP indicates whether student

i wants to admit to college j or not. Therefore, for each bid bi ∈ B and for each course ci ∈ C in

our model, if ci is requested in bid bi, then ¼(i, j) is set to 1. Otherwise, it is set to 0. For each bid

bi ∈ B in our model, the weights of the requested courses correspond to the strict college preference

of the student i. For each course ck ∈ C in our model, the weights of the bids that request the

course ck correspond to the strict student preference of the college j. In the SCAP, each student

i can enroll at most s(i) colleges and each college j can accept d(j) students. In our model, since

only one course can be assigned to a bid bi, we set s(i) = 1. However, a course ck can be assigned

to qck students, and therefore we set d(j) = qck . Then, the “college optimal” deferred acceptance

procedure [27] produces a stable allocation in which the courses are assigned to the bids in such a

way that the bid weights are favored against the weights of the requested courses. However, the

stable allocation found by the deferred acceptance procedure can be different from the allocation

found by the direct barter model since the direct barter model does not seek a stable allocation but

an allocation that maximizes total satisfaction of students. For instance, assume that the following

two add bids are submitted:

1Note that the latter requirement cannot be satisfied when the bid weight function in Eq. (7) is used. Therefore,
even the instances of direct barter model consisting of add bids cannot be reduced to the SCAP.
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Student 1 (bid 1): c∅ → {course A, course B}
Student 2 (bid 2): c∅ → {course A}

Suppose that the weight of the first bid is higher than that of the second bid. Then, the deferred

acceptance procedure would assign course A to Student 1 which is the only stable allocation.

However, using the direct barter model both bids would be satisfied and Student 1 would get

course B and Student 2 would get course A.

7 Conclusion

In this paper, we have modeled the course add/drop process as a direct bartering problem in

which add/drop requests appear as bids. We formulated the resulting problem as an integer linear

program, and then showed that our problem can be solved in polynomial time as a minimum

cost network flow problem. In our model, we also introduced a two level weighting mechanism

that enables students to express their preferences for their bids and for the requested courses.

The weighting mechanism also improves fairness among the students. As demonstrated with the

experimental results, the minimum cost flow network solvers can solve problem instances for a

typical university within seconds. Hence, our algorithms can be deployed in universities with

hundreds of thousands of students without worrying about execution times. The experimental

results also show significant improvement in the quality of the solutions over the currently used

FCFS based system while preserving the fairness, and hence we believe that the direct bartering

model will greatly improve the satisfaction of students in the universities.

As a final note, the real-life performance of our problem also motivates us to apply the direct

barter approach to different application areas. For instance, an electronic exchange that facilitates

bartering e-media such as e-books, music and movies on the Internet can be designed in a similar

manner.
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Bids:

1. Ali : STS 401.01 → {PSY 101.01, STS 401.02}
2. Mehmet : SOC 101.01 → {STS 401.01}
3. Ayşe : ESC 301.01 → {SOC 101.01}
4. Murat : STS 401.02 → {SOC 101.01, ESC 301.01}
5. Murat : PSY 101.01

∗−→ {ESC 301.01}
6. Elif : ∅ → {STS 401.01, STS 401.02}
7. Elif : ∅ → {SOC 101.01}
8. Aslı : SOC 101.01 → ∅

Remaining Quota Information:

∙ STS 401.02 : 1 student

Figure 1: Example problem for illustrating add, drop, and barter bids.
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Figure 2: Minimum cost flow network of the example given in Section 2 with (capacity,cost) values
on the arcs. The solution is shown with the bold arcs where one unit of flow passes in each bold
arc.
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Figure 3: Network for illustrating the usage of the restriction nodes for a course restriction set with
(capacity,cost) values on the arcs.
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Table 1: Running times of the network solver for the test cases (seconds). (*) This row presents
the results for Boğaziçi University.

Avg. # Running Time (s)
# Students # Courses Bids mean stdev

*7095 1158 22,700 0.57 0.03
10,000 1632 32,090 1.07 0.04
25,000 4080 80,012 3.85 0.13
50,000 8160 160,099 9.00 0.29

100,000 16,321 320,675 20.44 0.75
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Figure 4: Graph of the number of students vs. running time (seconds) of the network solver.
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Table 2: Improvements in the solutions of the barter model over the FCFS model. (*) This row
presents the results for Boğaziçi University.

# Satisfied Bids # Satisfied Students
(mean / stdev) (mean / stdev)

# Stu. (p) # Bids FCFS Barter Impr. FCFS Barter Impr.

7095

0.20 22,757 18,367 / 148 20,642 / 129 12.4% 6719 / 17 6828 / 15 1.6%

*0.28 22,725 17,823 / 176 20,409 / 153 14.5% 6674 / 17 6822 / 16 2.2%

0.40 22,685 16,847 / 184 19,905 / 155 18.2% 6605 / 23 6820 / 12 3.2%

0.60 22,761 14,224 / 260 18,656 / 140 31.2% 6322 / 39 6814 / 14 7.8%

0.80 22,729 9174 / 437 17,212 / 190 88.0% 5329 / 128 6812 / 16 27.9%

0.90 22,723 5103 / 497 16,300 / 116 224% 3737 / 267 6760 / 23 82%

0.95 22,745 2660 / 503 16,050 / 163 523% 2249 / 356 6671 / 24 203%

0.99 22,726 556 / 123 15,569 / 151 2827% 537 / 114 6580 / 25 1178%

50,000

0.20 160,226 129,495 / 513 145,312 / 405 12.2% 47,285 / 53 48,040 / 47 1.6%

0.40 160,312 118,538 / 595 140,396 / 407 18.4% 46,469 / 68 48,033 / 37 3.4%

0.60 160,319 100,492 / 1138 131,704 / 506 31.1% 44,625 / 167 48,039 / 41 7.7%

0.80 160,274 64,312 / 1330 121,217 / 416 88.6% 37,416 / 383 48,017 / 55 28.3%

0.90 160,052 35,624 / 1321 115,162 / 326 223% 26,203 / 691 47,675 / 57 82%

0.95 160,477 18,984 / 994 113,228 / 345 498% 16,084 / 731 47,010 / 72 193%

0.99 160,276 3597 / 507 109,539 / 298 3003% 3480 / 476 46,300 / 43 1254%
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Figure 5: Graph comparing the number of satisfied students in the solutions of the barter model
and the FCFS model.
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