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Abstract

Trading of used goods in secondhand markets is considered to have both environmental

and economic benefits. For the trading of used goods as well as new ones, this study proposes

a periodic double auction model for Internet-based electronic markets whereby each bidder

can place both asks and bids for selling and purchasing goods respectively during a trading

period. The proposed model allows each bidder to place a spending limit order such that the

difference between the cost of the purchased goods and the income obtained from the sold

goods does not exceed this limit. Furthermore, since a bidder may be indifferent to multiple

goods, e.g. copies of a same title, the model also provides a mechanism so that bidders

may combine a number of bids inside a set and put a limit on the number of goods to be

purchased in this set. The model is mathematically defined, and the corresponding winner

determination problem is formulated using linear integer programming. Since the problem

is shown to be NP-hard, a number of heuristic methods are also proposed. Performances

of these methods are evaluated on a comprehensive test suite and statistical analyses of the

results are presented. Furthermore, possible economical contribution of the model is also

evaluated. The results indicate that the proposed model can be used efficiently in large-scale

markets with tens of thousands of bidders.

Keywords : Electronic Market; Double Auction; Budget Constraint; Used Good Trading;

Secondhand Market; Market Design; Mathematical Modeling; Integer Programming; Com-

binatorial Optimization.
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1 Introduction

Although introduced in late 1980’s (Pearce and Turner, 1989), the concept of the Circular

Economy has recently received much attention as a way to reduce the environmental burden

of current unsustainable production and consumption model (see Ghisellini et al. (2016) for a

review). The Circular Economy aims to close the loops in industrial ecosystems with the well-

known slogan ”reduce, reuse, recycle” (Stahel, 2016; Thomas, 2011). It has been promoted by

environmental agencies such as the European Environment Agency (The European Commission,

2015) and the U.S. Environmental Protection Agency (United States Environmental Protection

Agency, 2017), and Germany, Japan and China have already integrated this concept into their

laws (Geissdoerfer et al., 2017; Yuan et al., 2006).

Within the concept of the Circular Economy, a key aspect of reuse strategy is the trading

of used durable goods. Trading of a durable good through a secondhand market extends the

life span of the good, and hence is considered to have positive environmental impacts as long as

the amount of resources required for the usage phase of the good is smaller than the resources

required for new production (Clausen et al., 2010; Cooper and Gutowski, 2017). This is the

case for many types of goods that consume small amount of energy or no energy at all such as

books, furniture, and consumer electronics (Clausen et al., 2010).

Aside from the environmental benefits, used goods trading has also economic benefits. From

the buyers’ perspective, the presence of secondhand markets always increases buyers’ welfare

(Arunkundram and Sundararajan, 1998). These benefits also provide incentive for market

makers to build and execute such markets, the well-known of examples of which are eBay and

Amazon.com. Ghose et al. (2006) estimate that Amazon.com obtains a profit of approximately

$65 million from used book sales. The authors also estimate an increase of approximately $88

million in the total welfare. In line with this estimation, Thomas (2003) argues that secondhand

markets always increase overall economic welfare independent of whether they affect the demand

for new goods.

Considering these environmental and economic benefits, widespread trading of used goods

should be favored. Accordingly, in order to provide development or growth of secondhand

markets, this study introduces a market model called Double Auction with Budget Constraints

(DABC) model for Internet-based secondhand markets. The DABC model utilizes the periodic
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(discrete-time) double auction (DA) institution for the trading of used goods as well as new

ones (the DA institution is described in Section 2). Market participants, i.e. bidders, can have

both buyer and seller roles, and therefore each bidder can submit both asks, i.e. sales orders for

the goods they want to sell, and bids, i.e. purchase orders for the goods they want to purchase

inside the same trading period. For pricing the goods, the well-known k-DA policy is used. The

model keeps track of the budgets of the bidders so that each bidder can spend the income to be

obtained from her goods for the goods she wants to buy. The model also features a spending

limit mechanism such that for each bidder the difference between the expenses and the income

does not exceed the declared spending limit of the bidder. This mechanism enables bidders to

participate in the market without the risk of having a budget deficit.

Another issue handled in the proposed model is that depending on her preferences, a bidder

may treat a number of goods as substitutable or indistinguishable. For instance, a bidder

may be indifferent to multiple copies of the second edition of a textbook offered in the market

the quality of which ranges from good to excellent. Another may request the same textbook

without distinguishing its edition or quality. The DABC model further provides a mechanism

for handling such preferences of the bidders. Each bidder is allowed to combine multiple offers

inside a single bid and restrict the number of goods to be purchased, for instance to only one,

in that bid. Of course, she is also able to offer different prices for the goods listed in the bid

through which she is able to encode her preference for each of these goods.

By means of these features, the DABC model aims to attract more participants to the used

good markets and to increase the total economic welfare of the participants.

In the next section, a brief overview of the DA institution is given. In Section 3, the

DABC model is explained in detail on an example market scenario. Section 4 introduces the

mathematical definition of the model. The linear integer programming formulation of the winner

determination problem of the model is also presented. It is proven that the decision version of

the winner determination problem is NP-complete, and it is inapproximable unless P = NP .

Since the problem is intractable, and a number of heuristic methods are also proposed. Section

5 introduces these methods in detail. In order to evaluate the performances of these methods,

a number of experiments are conducted, and the results of these experiments are presented in

Section 6. Finally, the paper is concluded in Section 7.
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2 A Brief Review of Double Auction Institution

As defined by Friedman (1993), a market institution is “a set of rules specifying which sorts of

bids and other messages are legitimate, and how and when specific traders transact, given their

chosen messages”. Among the market institutions, the double auction (DA) institution is an

important and widely used institution especially in stock exchanges. In DA institution, multiple

potential sellers and buyers coexist in the auction and can submit multiple asks (sales orders)

and bids (purchase orders) simultaneously to the auctioneer for well-defined commodities. Then,

the auctioneer determines a clearing price p for each commodity. The sellers who asked less

than or equal to p sells their commodities and the buyers who bid greater than or equal to p

purchase the corresponding commodities at the clearing price p.

Beginning with Smith (1962), many laboratory experiments with DA rules have been carried

out (see Davis and Holt (1993) and Holt (2006) for a survey). The experiments demonstrate

that the DA institution results in high allocative efficiency even with a small number of traders

(Friedman, 1984; Plott, 1982; Smith, 1982) which also explains the wide usage of the DA insti-

tution in the exchanges. The popularity of the institution has motivated researchers to propose

and study variants of the DA. The single-unit DA is the base model in which each commodity

in the market is considered as a unique good. The multi-unit DA (Huang et al., 2002; Plott

and Gray, 1990) is an extension to the single unit DA which allows multiple instances of a

commodity to be traded in the auction. Kalagnanam et al. (2001) introduce a multi-unit DA

institution with assignment constraints and propose a network flow algorithm for finding the

optimum allocation of commodities. In the (multi-unit) combinatorial DA (Fan et al., 1999;

Xia et al., 2005), the institution further allows package (combinatorial) bidding in which the

participants can submit bids on bundles of goods instead of a single good as in combinatorial

auctions.

According to the market clearing interval, there are two types of the DA institution. In the

continuous time DA institution, asks and bids can be submitted and retracted any time during

the auction, and exchanges of goods are carried continuously. Depending on the active set of

asks and bids, a public list of best orders, asks with lowest price and bids with highest price, is

maintained. If a seller offers a price that is smaller than or equal to the bid with the highest

price or if a buyer offers a price that is greater than or equal to the ask with the lowest price,
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the corresponding ask and bid pair are matched and removed from the system. The continuous

time DA is the preferred auction format in stock exchanges.

In the discrete time DA institution, which is also known as the call-market (Satterthwaite

and Williams, 1993) or the clearinghouse (Friedman and Rust, 1993), traders submit sealed

asks and bids during a predefined trading period. At the end of this period, the asks and bids

are sorted according to their prices, and supply/demand profiles for the commodities, i.e. the

supplied and demanded quantities at each price, are generated. Using these profiles, market

equilibrium prices are found. The market is then cleared by matching the lowest priced ask

to the highest priced bid and continuing until the prices cross the equilibrium price threshold.

This market clearing procedure is computationally easy (Bao and Wurman, 2003; Wurman et al.,

1998).

For determining the market equilibrium prices in a discrete time DA institution, k-DA policy

can be used (Chatterjee and Samuelson, 1983). In two player k-DA policy, first a parameter

k ∈ [0, 1] is determined, and then the equilibrium price is defined as:

k · b+ (1− k) · a

where a and b are the prices of the matched ask and bid, respectively (a ≤ b). The parameter k

defines the distribution ratio of the utility (b−a) between the seller and the buyer. For instance,

in 1/2-DA, the utility is equally shared. The border cases k ∈ {0, 1} have strategic importance.

If k = 0, the seller determines the equilibrium price. This policy is called seller’s offer DA.

Conversely, if k = 1, then the policy is called buyer’s bid DA in which the buyer determines

the equilibrium price. The k-DA policy can simply be extended to the multilateral case where

there are multiple buyers and sellers of the same good (Satterthwaite and Williams, 1989).

In terms of allocative efficiency, the expected efficiency of a discrete time DA institution

is higher than that of the continuous time DA (Gode and Sunder, 1993; Parsons et al., 2006).

Despite this inefficiency, the continuous time DA is still the preferred institution in many finan-

cial markets since it is believed that the high market throughput of the continuous time DA

institution compensates the efficiency loss (Phelps et al., 2005).

For further details on DA institution, the reader is referred to the surveys (Friedman and

Rust, 1993; Parsons et al., 2006).
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Ask 1: { Video Game A for at least $25 }

Bidder 1

Ask 2: { Video Game B for at least $22 }

Ask 3: { Movie Disc A for at least $14 }

Bidder 2

Ask 4: { Book A for at least $20 }

Ask 5: { Movie Disc B for at least $10 }

Bidder 3

Ask 6: { Video Game C for at least $16 }

Bidder 4

No asks submitted.

Bid 1: { Movie Disc A for at most $20 }

Bidder 1

Bid 2: { Movie Disc B for at most $18 }

Bid 3: { Book A for at most $24 }

Spending Limit: $0

Bid 4: At most two goods from {

Video Game A for at most $33,

Video Game B for at most $26,

Bid 5: {Movie Disc B for at most $12 }

Spending Limit: $4

Video Game C for at most $20 }

Bid 6: At most one good from {

Bidder 3

Video Game A for at most $29,

Video Game B for at most $28 }

Spending Limit: $3

Bid 7: { Video Game C for at most $22 }

Bidder 4

Spending Limit: $22

Bidder 2

Sells Buys Net Balance

Bidder 1

Bidder 2

Bidder 3

Bidder 4

Video Game A for $29

Video Game B for $25

Video Game C for $19

$1

$10

$8

- $19

Utility Gain

$16

$9

$10

$3Nothing

Movie Disc B for $14
Video Game C for $19
Movie Disc B for $14

Video Game C for $19

Movie Disc A for $17
Book A for $22

Movie Disc A for $17
Book A for $22

Video Game A for $29
Video Game B for $25
Video Game A for $29
Video Game B for $25

Movie Disc A for $17
Movie Disc B for $14

Book A for $22

Movie Disc A for $17
Movie Disc B for $14

Book A for $22

Figure 1: Example market scenario for demonstrating the DABC model.

3 The DABC Model

In this section, the DABC model will be introduced through an example market scenario which

is illustrated in Figure 1.
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In this model, each bidder can sell and purchase goods simultaneously, i.e. bidders can have

both buyer and seller roles inside a single trading round. Firstly, bidders declare the goods they

want to sell along with a price they request for each good, i.e. submit asks to the auctioneer. For

instance, in this scenario, Bidder 1 wants to sell two video games, Video Games A and B and

asks for $25 and $22 for these two games respectively. These prices are the ask prices. An ask

price indicates the minimum amount of money the bidder is willing to get if the corresponding

good is sold. However, the actual transaction prices could be higher. Similarly, Bidder 2 asks

$14 for Movie Disc A and $20 for Book A, and Bidder 3 asks $10 for Movie Disc B and $16 for

Video Game C. Bidder 4, on the other hand, submits no asks, i.e. she has only a buyer role.

Secondly, the bidders declare their purchase bids as shown in Figure 1. In the DABC model,

each instance of a good in the market is considered as a unique good since the instances of a

same good can be differentiated by the bidders. For instance, suppose that there are multiple

copies of a same book to be sold in the market, however:

• conditions of the copies may be different such as like-new, acceptable, has some noticeable

wears;

• there may be several editions of the same title;

• reputations of the sellers of the copies may be different;

• locations of the sellers, and therefore the associated shipment costs and the corresponding

environmental impacts may vary.

These differences between the copies of a same title could be important for some bidders and

not for the others. Therefore, in this model, each bidder is allowed to encode her preferences of

substitutabilities in her bids.

This feature can be seen in the example bids. For instance, in Bid 6, Bidder 3 considers that

Video Game A and Video Game B are substitutable and declares that she wants to purchase

one of these games. She bids $29 and $28 for these two games respectively. These prices are the

bid prices. A bid price indicates the maximum amount of money the bidder is willing to spend

for the corresponding good. However, the actual transaction prices could be lower.

Bidder 2, on the other hand, want to purchase at most two games among the video games

A, B and C. Thus, in Bid 4, she bids $33, $26 and $20 for these three games respectively.
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However, Bidder 2 has a further request. She also wants to purchase movie disc B (a Blu-Ray

disc for example) for at most $12. Therefore, she submits a second bid (Bid 5) containing only

one good. When the market is cleared, this bidder may get up to three goods.

After the bidders submit their purchase bids, each bidder with a buyer role declares a

spending limit which indicates the maximum amount the bidder may spend in the market. If

a bidder has also goods for sale, the model adds the income from the sold goods to the budget

of the bidder. In this case, the spending limit indicates the bound on the difference between

the expenses and the income of the bidder. In other words, the amount spent on the purchased

goods minus the income obtained from the sold goods cannot exceed this limit value. For

instance, Bidder 3 wants to sell two goods for at least $10 and $16 and wants to purchase one

of the video games A or B for $29 or $28 respectively. She declares a spending limit of $3.

Thus, she will have enough budget to purchase one of the video games A or B only if both of

her goods are sold. However, if she had declared a spending limit of $29 for instance, then she

would be able to purchase one of these games even if none of her goods are sold. Note that

these examples are given on the basis that the transactions occur at the corresponding ask and

bid prices.

In the DABC model, the utility of a transaction between a seller and a buyer is defined

as the difference between the corresponding bid and ask prices for the good to be exchanged.

Negative utility values are not allowed, i.e. the transactions are not subsidized by the market

maker. Therefore, bids whose bid price is smaller than the corresponding ask price are simply

discarded. For pricing the goods, k-DA policy, as explained in Section 2, is used. Accordingly,

the price of an exchanged good is defined as

k · bid price+ (1− k) · ask price

where k ∈ [0, 1] is the parameter of the k-DA policy which determines how the transaction

utility is distributed between the seller and the buyer. A typical value for k is 0.5 in which the

utility is distributed equally. However, in real life markets, the market maker should also be

paid in order to keep the market running. In the DABC model, the market maker can be paid

by a share of the utility obtained in each transaction.

The objective of the DABC model is to maximize the sum of the transaction utilities so as
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to maximize the total economic welfare of the bidders. In order to achieve the optimum market

efficiency, all the bidders should declare their true valuations for the goods in the market. How-

ever, if they can benefit, the bidders are tempted to declare their own valuations incorrectly as

a strategic behavior. In this case, the efficiency of the market reduces. A market mechanism

which ensures that the declaration of a bidder’s true valuation is the best strategic behavior for

that bidder independent of how other bidders act in the market, is called truthful or incentive

compatible in dominant strategies. This pricing scheme is, on the other hand, is not incentive

compatible in dominant strategies (Babaioff and Nisan, 2004). However, this theoretical limita-

tion might not cause great loss of efficiency in practice. For instance, Wilson (1985) analyzed a

sealed bid double auction market institution (a multi-trader version of the k-DA), and concluded

that the market institution is incentive efficient, meaning that there is no incentive for bidders

to prefer another institution. In addition to this result, Rustichini et al. (1994) have shown

experimentally that the inefficiency of k-DA institution with only six buyers and six sellers in

a market is less than 1%. Furthermore, Satterthwaite and Williams (2002) have shown that no

other auction mechanism converges faster than k-DA in the worst-case. Thus, the inefficiency

of k-DA diminishes rapidly as the number of bidders increases which is expected in large-scale

online markets. For more detailed discussion of the efficiency of double auction mechanisms,

the reader is referred to the works of Parsons et al. (2006) and Babaioff and Nisan (2004).

As noted earlier, the primary feature of the DABC model is to allow bidders to use the

revenue to be obtained from the goods they sell in the market for purchasing new goods. That

is, transparently directing the flow of income to the expenses. The benefit of this feature can

also be seen in this scenario. As indicated by their spending limits, Bidders 1, 2 and 3, do not

have enough budget to purchase the goods they want. Therefore, in traditional markets, they

would have to sell their goods first, and using the income, they would be able to purchase new

goods. Thus, for this particular scenario in a traditional market, only one transaction occurs.

Bidder 4 buys video game C from Bidder 3 for $19 (assuming the transaction price is the average

value). After this transaction Bidder 3 would get $19, however this amount does not allow her

to purchase a good she wants even when combined with her spending limit, i.e. budget, of $3.

Thus, the trading volume of the market would be $19, and the total utility would be just $6.

However, the outcome of the DABC model for this market scenario is quite different as seen in

Figure 1. Using the DABC model, all six goods offered in the market are sold with a trading
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volume of $126 and total utility of $38, and none of the bidders spend more than their spending

limits in the market.

The implementation of the model is also straightforward. A trading round consists of three

periods. In the first period, asks are collected from bidders also with possible modifications

during this period. In the second period, bidders submit their bids along with their spending

limits. Again, the bidders may modify their bids and spending limits during this period. After

the second period is over, in the third period, the market is cleared by solving the winner

determination problem which will be introduced in the next section. The winning bids are,

then, announced to the bidders. Unsatisfied asks/bids of a bidder could be transferred to the

next bidding round in case the bidder requests so. The length of the rounds can be determined

according to the market to which the model is applied and the rate of submission of bids in the

market. The longer periods result in higher trading volume but reduces the market throughput.

4 Formulation of the DABC Model

The DABC model is formally defined as follows:

Let D = {d1, d2, . . . , dm} be the set of m market participants, i.e. bidders, where a bidder

may have only a seller role, only a buyer role or may have both roles. Each bidder with a seller

role declares a set of goods to be sold, Gi, and the corresponding ask prices (1 ≤ i ≤ m, Gi = ∅

if di has only a buyer role). Since each good is considered unique in this model, the sets Gi

do not intersect (∀i, i′ |Gi ∩ G′i = ∅). Furthermore, let the set G = {g1, g2, . . . , gn} denote all

the goods available in the market where G =
⋃m

i=1Gi. α(gj) indicates the corresponding ask

price of the good gj . Note that the ask price α(gj) indicates the minimum amount for which

the owner of the good gj is willing to sell for (1 ≤ j ≤ n, α(gj) ∈ R+ ∪ {0}).

Each bidder with a buyer role submits a spending limit, and these limits are denoted with

tuple L = (l1, l2, . . . , lm) where li is the spending limit of the bidder di (li ∈ R+ ∪ {0}). For

bidders who do not want to put a limit on their purchases, a sufficiently high value may be

defined as a limit without affecting the outcome.

A bid in the DABC model is defined as a pair, bk = (Rk, uk), where Rk is the request set

and uk is the upper purchase limit of the bid bk (uk ∈ Z+). The request set, Rk, consists

of z elements, Rk = {rk1, rk2, . . . , rkz} where rkl denotes the good to be purchased, i.e. the
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requested good. Along with each good requested, the bidder submits a bid price and β(rkl)

indicates the bid price of the good rkl. Note that the bid price β(rkl) indicates the maximum

amount for which the owner of the bid bk is willing to purchase the good rkl (1 ≤ l ≤ z,

rkl ∈ G, β(rkl) ∈ R+ ∪ {0}). The bids with an offered price less than the corresponding ask

price are ignored (∀k, l |β(rkl) ≥ α(rkl)). The upper purchase limit, on the other hand, indicates

the maximum number of goods that the bidder is willing to purchase among the goods in Rk.

Finally, the set of bids submitted by the bidder di is denoted as Bi, and the set of all bids,

B = {b1, b2, . . . , bv}, is defined as B =
⋃m

i=1Bi.

When a transaction occurs, the price of the good rkl is determined as Pkl = k · β(rkl) + (1−

k) · α(rkl) where k ∈ [0, 1] is the parameter of the k-DA policy. The utility of this transaction

is defined as Ukl = β(rkl)− α(rkl).

The bid bk is called satisfiable if there exists at least one good in the request set Rk which is

available for purchase and the price of this good is within the budget of the bidder. The model

ensures that the budget of the bidder is never deficit. The budget of a bidder is defined as the

proceeds of the sold goods added with the spending limit of the bidder, minus the cost of the

purchased goods.

The winner determination problem (WDP) of the DABC model is defined as finding the

maximum cardinality set of mutually satisfiable bids such that the total utility is maximized.

In order to formulate the problem using linear integer programming, a binary variable xkl

is introduced. It denotes whether the item rkl is purchased in the lth pair of the request set

Rk of the bid bk (1) or not (0). The linear integer programming formulation of the model is as

follows:
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maximize
∑

∀k,l | bk∈B∧rkl∈Rk

Ukl · xkl (1)

subject to
∑

∀l | rkl∈Rk

xkl ≤ uk (∀k| bk ∈ B) (2)

∑
∀k,l | bk∈B∧rkl∈Rk∧rkl=gj

xkl ≤ 1 (∀j | gj ∈ G) (3)

∑
∀k,l | bk∈Bi∧rkl∈Rk

Pkl xkl −
∑

∀k,l | bk∈B∧rkl∈Rk∧rkl∈Gi

Pkl xkl ≤ li (∀i | di ∈ D) (4)

xkl ∈ {0, 1} (∀k, l) (5)

In this formulation, Eq.(1) is the objective function which maximizes the total utility ob-

tained from all transactions. Eq.(2) enforces the upper purchase limits of the bids, i.e. for every

bid, the number of goods that can be purchase is at most uk. Eq.(3) ensures that each good

is sold to at most one bidder. Finally, Eq.(4) is the budget constraint, that is for each bidder,

the total cost of the purchased goods cannot exceed the sum of the spending limit of the bidder

and the proceeds of the sold goods.

4.1 Theorems Related to the Winner Determination Problem

In this section, complexity results related to the WDP are presented.

Proposition 1. The decision version of the WDP is NP-complete.

Proof. Let Π be the decision version of the WDP. Π is defined as follows: Given a set of bidders

D, a set of goods G and associated ask prices α(gi), spending limits of the bidders L, a set of

bids B and a positive integer K, is there a simultaneously satisfiable subset B′ ⊆ B such that

the total utility is greater than or equal to K?

If we have a certificate that consists of set B′, this certificate can be verified in polynomial

time by checking Eq.(2-4) using B′. Therefore, Π is in NP .

Next, a polynomial time transformation from the subset sum problem will be presented. Let

Π′ be the subset sum problem (Garey and Johnson, 1979, p. 243) which is defined as follows:

Given a finite set of positive integers A = {a1, a2, . . . , af} and a positive integer B, is there a

subset A′ ⊆ A such that
∑
∀i |ai ∈A′ ai = B ?
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Let Π′(A,B) be an instance of the subset sum problem. It can be transformed to Π in

polynomial time as follows: Let the set of bidders D consist of two bidders (D = {d1, d2}). Let

the set of goods to be sold by the bidder d1 be G1 = {g1, g2, . . . , gf} and by the bidder d2 be

G2 = {gf+1} (f = |A|). The ask prices of all the goods are zero (α(gi) = 0, 1 ≤ i ≤ f + 1).

Also let the spending limits of both bidders be zero (l1 = 0, l2 = 0). Assume that the bidder

d1 submits only one bid requesting one good gf+1 with a bid price of B/k, and the bidder d2

also submits one bid requesting up to f goods of the bidder d1 with the following bid prices

a1/k, a2/k, . . . , af/k . That is b1 = ({gf+1}, 1), β(r11) = B/k; and b2 = ({g1, g2, . . . , gf}, f),

β(r2l) = al/k, 1 ≤ l ≤ f). Finally, let K = 2B/k.

Since the spending limits of the bidders are zero, the bids b1 and b2 cannot be satisfied alone.

Together, they can only be satisfied if and only if there is a solution to the subset sum problem

instance Π′(A,B). Therefore, the solution of the problem instance of Π is also a solution of the

problem instance of Π′ and vice versa.

Since Π is in NP and the subset sum problem is NP-complete, the decision version of the

WDP is NP-complete.

This proof leads to the inapproximability result for the WDP.

Lemma 1. Unless P=NP, there is no polynomial time ε-approximative algorithm for the WDP

for any ε ∈ [0, 1).

Proof. If there exists a polynomial time ε-approximative algorithm for the WDP for any ε ∈

[0, 1), this algorithm can be used for deciding the subset sum problem as described in the proof

of Proposition 1. Since the subset sum problem is NP-complete, this would imply P=NP.

This inapproximability result suggests that finding a non-trivial feasible solution of a WDP

instance or proving that no such solution exists can be difficult. However, this result is valid

only for a special subset of the WDP instances in which the spending limits of all the bidders

are zero. The reason is that in all nontrivial feasible solutions of such an instance, for every

bidder the total price of the sold goods should be equal to the total price of the purchased

goods. Thus, in practice, most of the problem instances of this kind would possibly have no

nontrivial feasible solutions at all. However, these rare situations can also be avoided by the

market maker by forcing a lower limit for the spending limits of bidders.
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On the other hand, if the spending limits of all the bidders are as high as to allow every

bidder to purchase every good they want, the corresponding WDP instances become easier to

solve. This special case is called as budget-relaxed WDP.

Proposition 2. The budget-relaxed WDP is in P.

Proof. The budget-relaxed WDP can be modeled as a minimum cost flow problem (Ahuja et al.,

1993). Let N(V,A, l, u, c, b) denote a network with node set V , arc set A, lower bound l(v, w),

upper bound u(v, w) and cost c(v, w) for each arc (v, w) ∈ A, and supply/demand values b(v)

for each node v ∈ V .

The network is constructed by introducing a node for each bid bk ∈ B and for each good

gj ∈ G. The source node of the network is represented with s and the sink node is represented

with t. For each bid bk ∈ B, an arc is drawn from the source node s, to the bid node bk.

The upper bound of this arc is the upper purchase limit of the corresponding bid, that is

u(s, bk) = uk, and the associated cost is zero (c(s, bk) = 0). Then, for each bid bk ∈ B and

for each requested good rkl ∈ Rk, an arc is drawn from the node bk to rkl. The upper bound

of this arc is one, that is u(bk, rkl) = 1, and the cost of the arc is the additive inverse of the

utility value (c(bk, rkl) = α(rkl) − β(rkl)). Finally, for each good gj ∈ G, an arc is introduced

from the node gj to the sink node t with an upper bound of one and cost of zero (u(gj , t) = 1,

c(gj , t) = 0). There is no flow requirement for any arc (l(v, w) = 0 ∀v, w|(v, w) ∈ A) and there

is no supply or demand for any node in the network, therefore, b(v) = 0 for every node v ∈ V .

The constructed network is shown in Figure 2. The minimum cost flow in this network gives

the optimum solution for the budget-relaxed WDP since the constraints in Eq.(2,3) are encoded

in the network and minimizing the cost in the network means maximizing the total utility.

5 Solution Methods

In Section 4, the WDP of the DABC model was defined and formulated as an integer linear

program. Therefore, DABC model instances can be solved using general purpose integer pro-

gramming solvers. However, since the WDP is NP-hard, general purpose solvers may not be

able to find the optimal solution or any solution at all for difficult instances within a given time

limit. Therefore, heuristic approaches would be necessary for solving such instances.
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Figure 2: The network of the budget-relaxed WDP with (capacity,cost) values on the arcs.

This study introduces three problem specific heuristic methods in the order of increasing

complexity for the WDP. In each of these methods, firstly, all the bids in a given DABC problem

instance P are partitioned into subbids and a list L of all subbids in P is generated. For instance,

if three goods are requested in a bid, i.e. Rk = {Book A,Book B,Book C}, a subbid is generated

for each of the books A, B and C. A subbid is a data structure which comprises, at least, the

good requested inside the subbid, the associated bid price, the bid number to which the subbid

belongs, and a flag indicating whether the subbid is satisfied or not.

After the list L is generated, it is sorted according to a given sorting criterion C. In this

study, the following three different values for C are used:

(i) Unsorted : L is kept as it is, i.e. in the order of arrival time,

(ii) Utility : L is sorted in descending order by the utility values of the subbids, and

(iii) Linear Relaxation Values: L is sorted in descending order by the value of the decision

variables xkl obtained when the linear relaxation of the WDP is solved.

Note that sorting criterion Unsorted is included for demonstrating the effects of the other two

sorting criteria on the performances of heuristic methods.

The first heuristic method is called SatisfySubbids (SS) which can be seen in Alg. 1. First,

the list L is generated and sorted as explained above. After the list S is sorted, the first subbid
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in the list L (marked as the current subbid) is checked whether it can be satisfied or not. A

subbid is satisfiable if:

(i) the subbid is unsatisfied,

(ii) the good requested in the subbid is available, i.e. not sold,

(iii) the number of other subbids that are already satisfied in the same bid is less than the

upper purchase limit value of that bid, and finally,

(iv) the current balance of the buyer is greater than or equal to the price of the subbid.

If the current subbid is satisfiable then it is committed, meaning that the subbid is marked as

satisfied, the requested good is marked as sold, and the price of the subbid is subtracted from

the balance of the buyer and added to the balance of the seller. Initially, the balance of each

bidder is set to the spending limit value declared by that bidder. The algorithm then moves to

the next subbid.

Algorithm 1 SatisfySubbids

Input: DABC problem instance P , sorting criterion C for subbids.
Output: Solution list S of satisfiable subbids.
1: Set S ← {}
2: Build a list L of all subbids in P and mark all subbids in L as unsatisfied
3: Sort L according to sorting criterion C
4: Set currIndex← 0 // Indices start from 0
5: while currIndex < |L| do
6: Set currSubbid← L[currIndex]
7: Set nextIndex← currIndex+ 1
8: if currSubbid is satisfiable with balance check then
9: Commit currSubbid

10: Add currSubbid to S
11: // Find the next subbid to be checked
12: for all subbid′ ∈ L of the bidder who owns of the good requested in currSubbid do
13: Set nextIndex′ ← the index of subbid′

14: if nextIndex′ < nextIndex and subbid′ is satisfiable with balance check then
15: Set nextIndex← nextIndex′

16: end if
17: end for
18: end if
19: Set currIndex← nextIndex
20: end while
21: return

The next subbid is determined as follows. If the current submit is not committed, i.e.

unsatisfiable, then the current subbid is skipped and the next subbid is simply the subbid
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that immediately follows the current subbid in the list L. However, if the current submit is

committed, firstly, the minimum index of the satisfiable subbids of seller is found and compared

to the index of the current subbid. If the former is smaller, then the next subbid to be checked

is the former subbid. The reason for this approach is that a previously checked unsatisfiable

subbid, can now be satisfiable if the buyer has now enough budget. The algorithm terminates

when there is no satisfiable subbid left in L.

In the SS method, a subbid is committed if the buyer has enough budget to purchase the

good requested at the time the subbid is checked. If not, that subbid is skipped. However, it

may be the case that the bidder may have enough budget if she sells her goods first. In order

to utilize this idea, a second heuristic method, called SatisfySubbidsandIncreaseBudget (SSIB),

is proposed the pseudocode of which can be seen in Alg. 2.

In the SSIB method, when a subbid is checked, if the buyer has not enough budget to

purchase the good, then the method tries to improve the income of the buyer. For this reason,

in the SSIB method, satisfiability definition of a subbid is temporarily relaxed such that a subbid

is considered as satisfiable is even if the buyer has not enough budget, i.e. condition (iv) above

is not checked. If the current subbid is satisfiable without balance check, then it is temporarily

committed which may or may not cause a deficit for the buyer. If the buyer is deficit, then the

method tries to commit the unsatisfied incoming subbids to the buyer, i.e. the subbids in which

goods offered by the buyer are requested, until the budget deficit is closed. The order at which

the incoming subbids are processed is the same as the list L. These steps are demonstrated in

Alg. 3. If by this process the budget deficit of the buyer is not closed, then the current subbid

and all the incoming subbids that are already committed are rollbacked. The method continues

with the next subbid.

The algorithm for determining the next subbid in the SSIB method is different than that of

the SS method. The reason is that if at least one incoming subbid is committed then not only

the budget of the seller of the good in the current subbid but also the budget of the buyer of

the current subbid may be increased. Therefore, the subbids of both the buyer and the seller

should be checked and the smallest index of the satisfiable (without balance check) subbids of

these bidders should be determined. If this index value is smaller than the index of the current

subbid in the list L, then the algorithm jumps to this subbid. Otherwise, the next subbid is

simply the subbid which immediately follows the current subbid in the list L. The algorithm
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Algorithm 2 SatisfySubbidsandIncreaseBudget

Input: DABC problem instance P , sorting criterion C for subbids.
Output: Solution list S of satisfiable subbids.
1: Set S ← {}
2: Build a list L of all subbids in P and mark all subbids in L as unsatisfied
3: Sort L according to sorting criterion C
4: Set currIndex← 0 // Indices start from 0
5: while currIndex < |L| do
6: Set currSubbid← L[currIndex]
7: Set nextIndex← currIndex+ 1
8: if currSubbid is satisfiable without balance check then
9: Commit currSubbid

10: Set deficitClosed← true
11: currBidder ← the bidder who submitted currSubbid
12: if the budget of currBidder is deficit then
13: Set [deficitClosed, LIBICommit]← IncreaseBudgetIn(P, currBidder)
14: end if
15: if deficitClosed then
16: Add currSubbid and LIBICommit to S
17: // Find the next subbid to be checked
18: for all subbid′ ∈ L of currBidder and of the bidder who owns the good requested in

currSubbid do
19: Set nextIndex′ ← the index of subbid′

20: if nextIndex′ < nextIndex and subbid′ is satisfiable without balance check then
21: Set nextIndex← nextIndex′

22: end if
23: end for
24: else
25: Rollback currSubbid
26: end if
27: end if
28: Set currIndex← nextIndex
29: end while
30: return
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Algorithm 3 IncreaseBudgetIn

Input: DABC problem instance P , the bidder currBidder whose budget to be increased
Output: Boolean deficitClosed indicating whether the budget deficit of currBidder is closed,

the list of subbids LIBICommit committed for increasing the budget of currBidder.
1: Set LIBICommit ← {}
2: Set deficitClosed← false
3: for all subbid′ ∈ L in which a good owned by currBidder is requested do
4: if subbid′ is satisfiable with balance check then
5: Commit subbid′

6: Add subbid′ to LIBICommit

7: if the budget deficit of currBidder is closed then
8: Set deficitClosed← true
9: return

10: end if
11: end if
12: end for
13: Rollback all the subbids in LIBICommit

14: return

terminates when there is no satisfiable subbid left in L.

The third proposed method, SatisfySubbidsandImprove (SSIMP), puts more effort into sat-

isfying the current subbid compared to the SSIB method. In the previous two methods, when

a subbid is committed, it is never rollbacked and always included in the final solution (except

the temporarily committed subbids in the SSIB method without available budget). However,

in the SSIMP method, a previously committed, i.e. satisfied, subbid now can be rollbacked so

as to increase the total utility. The pseudocode for the SSIMP method can be seen in Alg. 4.

In this method, if the current subbid is not satisfiable because of the conditions (ii), (iii),

and/or (iv) listed above, the method tries to fix these violations by committing and rollbacking

a set of subbids. The summary of this method is as follows:

(i) If the good requested in the current subbid is already sold and the utility of the current

subbid is greater than the utility of the subbid in which that good is purchased, then the

later subbid is rollbacked, making the good available again. If by this process, the budget

of the previous buyer becomes deficit, the method tries to close her budget by committing

the incoming subbids to this buyer as in the SSIB method (see Alg. 3). If the budget

deficit of the previous buyer cannot be closed, the current subbid is skipped and all the

temporarily committed subbids are rollbacked. These steps are presented in Alg. 5.

(ii) If the number of goods purchased in the bid to which the subbid belongs is the same as the
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upper purchase limit value of that bid, then the already satisfied subbid inside the same

bid that has the highest index in L is found. If the utility of this already satisfied subbid

is less than the utility of the current bid, then this already satisfied subbid is rollbacked,

enabling one more good to be purchased in this bid. If not, the current subbid is skipped.

These steps are presented in Alg. 6.

(iii) Finally, if the current balance of the buyer is less than the price of the current subbid, then

the method tries to increase the balance of the buyer by committing unsatisfied incoming

subbids to the buyer as in the SSIB method (see Alg. 3). However, if the budget of the

buyer cannot be increased sufficiently by applying these steps, then, different from the

SSIB method, the SSIMP method rollbacks already committed outgoing subbids of the

buyer, i.e. the subbids submitted by the buyer, one by one until the balance is sufficient for

the current subbid. The order in which the outgoing subbids are processed is the reverse

of the order of L. Of course, an outgoing subbid can only be rollbacked if the owner of

the good requested in the subbid would not have a budget deficit. If after rollbacking the

outgoing subbids, the balance of the buyer is still not sufficient, then all the temporary

changes are undone and the current subbid is skipped. These steps are demonstrated in

Alg. 7.

If after these three steps the current subbid becomes satisfiable and the utility to be gained

from the current subbid is higher than the utility to be lost by the changes done in these

three steps, then it is committed. If the current subbid is committed, then the method starts

traversing the list L from the beginning, since balances of multiple bidders may be affected.

Note that, none of these methods show a cyclic behavior, since an action which would cause

a decrease in the total utility is not accepted, i.e. the total utility does not decrease throughout

the iterations.

6 Experimental Results

In order to estimate the performances of the proposed problem specific heuristic methods under

real-life market conditions, a test case generator was developed.

The test case generator uses GNU Scientific Library. It has ten parameters which can be

configured to design a factorial testing. These parameters are as follows:
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Algorithm 4 SatisfySubbidsandImprove

Input: DABC problem instance P , sorting criterion C for subbids.
Output: Solution list S of satisfiable subbids.
1: Set S ← {}
2: Build a list L of all subbids in P and mark all subbids in L as unsatisfied
3: Sort L according to sorting criterion C
4: Set currIndex← 0 // Indices start from 0
5: while currIndex < |L| do
6: Set currSubbid← L[currIndex]
7: Set nextIndex← currIndex+ 1
8: if currSubbid is not satisfied then
9: Set currGood← the good requested in currSubbid

10: if currGood is already sold then
11: Set [goodRecovered, LRGCommit, sRGRollback] ← RecoverGood(P, currGood)
12: if not goodRecovered then
13: Set currIndex← nextIndex and continue
14: end if
15: else
16: Commit currSubbid
17: end if
18: Set currBid← the bid containing currSubbid
19: if the upper purchase limit value of currBid is negative then
20: Set [uLimitF ixed, sFULRollback]← FixULimit(P, currBid)
21: if not uLimitF ixed then
22: Undo all the changes made in this iteration
23: Set currIndex← nextIndex and continue
24: end if
25: end if
26: currBidder ← the bidder who submitted currSubbid
27: if the budget of currBidder is deficit then
28: Set [deficitClosed, LIBICommit]← IncreaseBudgetIn(P, currBidder)
29: if not deficitClosed then
30: Set [deficitClosed, LIBORollback]← IncreaseBudgetOut(P, currBidder)
31: end if
32: if not deficitClosed then
33: Undo all the changes made in this iteration
34: Set currIndex← nextIndex and continue
35: end if
36: end if
37: Add currSubbid, LRGCommit, LIBICommit to S and Remove sRGRollback, sFULRollback,

LIBORollback from S (Discard uninitialized variables if any).
38: Set nextIndex← 0
39: end if
40: Set currIndex← nextIndex
41: end while
42: return

22



Algorithm 5 RecoverGood

Input: DABC problem instance P , the good currGood to be recovered which is already sold.
Output: Boolean goodRecovered indicating whether the currGood is recovered or not, the

list of subbids LRGCommit committed for increasing the budget of the previous owner of
the recovered good, the rollbacked subbid sRGRollback in which the currGood is previously
purchased.

1: Set sRGRollback ← the subbid in which currGood is already purchased
2: Set prevOwner ← the bidder who submitted sRGRollback

3: Set goodRecovered← false
4: if the utility of currSubbid is greater than the utility of sRGRollback then
5: Rollback sRGRollback and Commit currSubbid
6: Set goodRecovered← true
7: if the budget of prevOwner is deficit then
8: Set [deficitClosed, LRGCommit]← IncreaseBudgetIn(P, prevOwner)
9: if not deficitClosed then

10: Rollback currSubbid and Commit sRGRollback

11: Set goodRecovered← false
12: return
13: end if
14: end if
15: end if
16: return

Algorithm 6 FixULimit

Input: DABC problem instance P , the bid currBid whose upper purchase limit value is to be
fixed.

Output: Boolean uLimitF ixed indicating whether the upper purchase limit of currBid is fixed
or not, the rollbacked subbid sFULRollback for fixing the upper purchase limit of currBid.

1: Set uLimitF ixed← false
2: Set utilityGain← the amount of utility gain obtained so far in this iteration
3: for all subbid′ in currBid (traversed in the reverse order of L) do
4: if subbid′ is satisfied and the budget of the bidder who submitted currBid is currently

greater than or equal to the price of subbid′ and the utility of subbid′ is less than
utilityGain then

5: Rollback subbid′

6: Set sFULRollback ← subbid′

7: Set uLimitF ixed← true
8: return
9: end if

10: end for
11: return
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Algorithm 7 IncreaseBudgetOut

Input: DABC problem instance P , the bidder currBidder whose budget to be increased
Output: Boolean deficitClosed indicating whether the budget deficit of currBidder is closed,

the list of tuples LIBORollback rollbacked for increasing the budget of currBidder.
1: Set LIBORollback ← {}
2: Set deficitClosed← false
3: Set utilityGain← the amount of utility gain obtained so far in this iteration
4: for all subbid′ ∈ L submitted by currBidder (traversed in the reverse order of L) do
5: if subbid′ is satisfied and the budget of the owner of the good requested in subbid′ is

currently greater than or equal to the price of subbid′ and the utility of subbid′ is less
than utilityGain then

6: Rollback subbid′

7: Add subbid′ to LIBORollback

8: if the budget deficit of currBidder is closed then
9: Set deficitClosed← true

10: return
11: end if
12: end if
13: end for
14: Commit all the subbids in LIBORollback

15: return

(i) The market type parameter determines which types of goods are available in the market

and their price ranges. The generator supports three different market types, namely Book,

CD/DVD and Electronic markets the price profiles for which are obtained from the studies

of Ghose et al. (2006), Smith and Telang (2008) and Ghose (2009), respectively. The price

profiles are based on the sales data obtained from the Amazon.com marketplace.

(ii) The number of bidders ranges from 1000 to 20,000, simulating small to large-scale markets.

(iii) The number of goods to be sold per bidder, the number of bids per bidder and the request

set size parameters are assumed to be distributed with Poisson distribution with means

ranging from 1 to 5, simulating market scenarios with different asks to bids ratios.

(iv) The request set determination method defines how the goods to be purchased are deter-

mined inside the bids. There are two approaches implemented, either the requested goods

in a bid are selected uniformly among the available goods in the market or only the first

requested good is selected uniformly among the available goods and the rest are selected

uniformly from a set of goods whose value are close to the value of the first good. The

former approach simulates the markets in which substitutable goods have wide range of

prices whereas in the latter approach, the substitutable goods assumed to be priced closely
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to each other.

(v) The upper purchase limit of a bid is uniformly selected between 1 and the size of the

request set of the bid.

(vi) The spending limit ratio parameter is used to determine the spending limits of the bidder.

The spending limit ratio takes five different values between 5% and 75% in the generated

test cases. Note that when the spending limit ratio is close to 0%, the bidder can only

spend the income obtained from her sold goods for purchasing new ones. On the contrary,

when the spending limit ratio is close to 100%, the bidder is expected to be able to purchase

the goods she wants without the need of income obtained from her sold goods.

(vii) k is the parameter of k-DA policy. k = 0.5 is used in the test cases.

Using the generator, a comprehensive test suite consisting of 8100 DABC model instances

was prepared. These test instances were solved using a workstation with two 8-core 3.1 GHz

Intel Xeon processors and a total of 128 GB memory using Linux operating system. For solving

the linear integer program of the model, Gurobi Mixed Integer Programming (MIP) solver

version 7 was used. The solver was given a wall-clock time limit of 60 minutes for each instance.

Among the generated 8100 problem instances, the MIP solver was able to find the optimal

solutions for 6650 instances (approximately 82% of the instances) using the default optimality

gap of 0.01%. The optimality gap of a solution is defined as the ratio of the difference between

the best integer solution and the best upper bound to the best upper bound. These instances are

referred as optimally solved instances throughout the text. For the remaining 1450 instances,

the MIP solver could not find the optimal solution within the given time limit of 60 minutes,

however, it was able to find an integer feasible solution for each of these test cases. These more

difficult instances are, on the other hand, referred as sub-optimally solved instances.

Each instance was also solved by each of the proposed three heuristic methods, SS, SSIB,

and SSIMP and for each method, three different sorting criteria, unsorted, utility and linear

relaxation values, were used. Thus, each instance was solved using nine different configurations.

In order to present the quality of the solutions found by the heuristic methods, a goodness

measure is defined such as:

Goodness of a Solution =
Obj. Val. of the Solution Found by the Heuristic Method

Obj. Val. of the Solution Found by the MIP Solver
· 100%
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The mean and standard deviation of goodness of the solutions found by the proposed heuristic

methods for the optimally solved 6650 instances can be seen in Table 1 and the corresponding

box plot is provided in Figure 3. The SSIMP heuristic provides the best results using the linear

relaxation values as the sorting criterion with a mean goodness value greater than 96% with a

standard deviation of less than 8%. The same heuristic with the utility sorting criterion performs

slightly worse compared to the linear relaxation values case with 1% less mean goodness value.

The results of the SSIB heuristic is behind the results of the SSIMP heuristic by a small margin

having an average of approximately 94% goodness independent of whether the utility or the

linear relaxation values sorting criterion is used. Finally, despite being the simplest of the

proposed heuristics, the SS heuristic provides quite acceptable results having a mean goodness

value of approximately 90% and 92% using the utility and the linear relaxation values sorting

criteria, respectively.

Table 1: Goodness of solutions of the heuristic methods for the optimally solved 6650 problem
instances (optimality gap ≤ 0.01%).

SS SSIB SSIMP

Sorting Criterion mean stdev mean stdev mean stdev

Unsorted 54.0% 11.8% 55.3% 11.6% 92.6% 9.7%
Utility 89.5% 11.0% 93.9% 8.8% 95.3% 7.7%

Lin. Rel. Values 92.4% 11.0% 93.9% 9.6% 96.3% 7.8%

The results for the unsorted sorting criterion, which can also be regarded as random order,

indicate that ordering of subbids is important for all three heuristic methods, however, the

SSIMP heuristic much more less affected by the sorting criterion, performing quite well even

with a randomly sorted subbid list which contributes to the reliability of the results found by

this heuristic method. This is not the case for the SS and SSIB methods which rely on the

quality of the sorting criterion heavily such that an unsorted subbid list may cause more than

30% decrease in the mean goodness.

In order to understand whether the presented pair-wise mean differences of the solutions

found by the heuristic methods are statistically significant or not, an ANOVA test is performed

with an alpha = 0.01 significance level followed by a multi comparison analysis testing. The

test results reveal that all the mean differences other than two are statistically significant at

this significance level which are indicated in Figure 3.
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Figure 3: Boxplot presenting the goodness of solutions of the heuristic method-sorting criterion
pair for the optimally solved 6650 problem instances (optimality gap ≤ 0.01%). An ‘x’ indicates
the mean value of the corresponding goodness values and a horizontal bar with ‘***’ indicates
that the corresponding mean difference is statistically significant at the α = 0.01 level.

The performances of the proposed heuristic methods are also measured for the remaining

sub-optimally solved 1450 problem instances ()with an optimality gap higher than 0.01%) with

respect to the sub-optimal solutions found by the MIP solver. Note that, some of these solutions

could in fact be optimal, however, the MIP solver might not have proven the optimality of the

solutions within the given time limit. The mean and standard deviation of goodness of the

solutions found by the heuristic methods for these instances are reported in Table 2. Note that,

in this case the goodness values may be higher than 100%, meaning that proposed heuristic

methods may find better solutions than the MIP solver. Actually, this is the case and it is seen

that SS and SSIB methods with the utility or linear relaxation values provide approximately

60% and 90% better solutions than the MIP solver (with the given time limit of 60 minutes for

each instance) on average, respectively. For the SSIMP method, more than two-fold increase in

the total utility is observed on average for these difficult cases.
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Table 2: Goodness of solutions of the heuristic methods for the sub-optimally solved 1450
problem instances (optimality gap > 0.01%).

SS SSIB SSIMP

Sorting Criterion mean stdev mean stdev mean stdev

Unsorted 90% 71% 103% 83% 185% 151%
Utility 159% 125% 193% 158% 213% 180%

Lin. Rel. Values 168% 131% 189% 153% 215% 180%

The mean running times of the heuristic methods and the MIP solver for all problem in-

stances can be seen in Table 3. The SS and SSIB heuristics are very fast when using the utility

as the sorting criterion, finding the solution in less than 2 seconds and 1 second respectively on

average even for the largest test cases with 20,000 bidders. Although still fast, when the linear

relaxation values sorting criterion is used, the mean running time increases to approximately

44 seconds for the largest test cases and 11 seconds on average. The reason for this increase is

the time required for solving the linear relaxation of the integer program introduced in Section

4 for each of the test instances.

Table 3: Mean running times of the heuristic methods and the MIP solver in seconds for all
problem instances categorized into the number of bidders. Note that the maximum running
time of the MIP solver for each instance is set to 3600 seconds.

Heuristic Sorting Number of Bidders

Method Criterion 1000 2000 5000 10000 20000 Overall

SS
Unsorted 0.0 0.0 0.1 0.4 1.6 0.4

Utility 0.0 0.0 0.1 0.3 1.5 0.4
Lin. Rel. Values 0.1 0.4 2.2 8.8 44.3 11.2

SSIB
Unsorted 0.0 0.0 0.0 0.1 0.3 0.1

Utility 0.0 0.0 0.0 0.1 0.4 0.1
Lin. Rel. Values 0.1 0.4 2.2 8.6 43.7 11.0

SSIMP
Unsorted 1.1 4.8 37.1 251.8 1408.9 340.7

Utility 0.4 1.7 13.5 84.5 479.5 115.9
Lin. Rel. Values 0.3 1.0 6.8 37.3 220.1 53.1

MIP Solver 456.9 549.2 711.5 842.3 985.9 709.2

The SSIMP heuristic takes longer to find a solution compared to other two proposed heuris-
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tics in line with its complexity. However, unlike the previous cases, the order of the subbids

have a huge impact on the running times of the SSIMP heuristic. The SSIMP heuristic with

the utility sorting criterion requires approximately 116 seconds on average whereas this reduces

to approximately 53 seconds with the linear relaxation values sorting criterion despite the fact

that the latter one requires additional time for finding the linear relaxation values as explained

above. The worst running times are obtained when the subbids are not sorted at all. The reason

for this difference is that the SSIMP method may work less on improving steps depending on

how the subbids are sorted.

Comparison of the Proposed Problem Specific Heuristics and Standard Ge-

netic Algorithm Based Approaches for the WDP

The presented results so far demonstrate the performances of the proposed problem specific

heuristics with respect to that of the general purpose MIP solver in terms of both quality

and running time. However, a question may arise whether a standard meta-heuristic approach

would also provide the same results or even better results than the proposed methods. For

this purpose, three Genetic Algorithm (GA) based heuristic methods were implemented. In

these methods, each solution is encoded as a binary string whose length is the number of

subbids where each bit in the string indicates whether the corresponding subbid is satisfied

or not in the corresponding solution. However, since there may be infeasible solutions in the

solution space, three different methods, namely GA-Penalty, GA-Feasible, and GA-Repair, using

different approaches for handling infeasibility were implemented.

GA-Penalty method is the standard GA implementation in which solutions in the population

are allowed to be infeasible. The initial population is randomly initialized. In order to solve

the infeasibility problem, fitness values of infeasible solutions are penalized while evaluating the

solutions. The penalty value, p, is defined as:

p = max
k,l

Ukl ·

 ∑
∀k| bk∈B

 ∑
∀l | rkl∈Rk

xkl − uk

 +
∑

∀j | gj∈G

 ∑
∀k,l | bk∈B∧rkl∈Rk∧rkl=gj

xkl − 1


+

∑
∀i | di∈D

 ∑
∀k,l | bk∈Bi∧rkl∈Rk

Pkl xkl −
∑

∀k,l | bk∈B∧rkl∈Rk∧rkl∈Gi

Pkl xkl − li

 (6)

so that p is proportional to the amounts of violations of constraints in Eq.(2)-(4). If a constraint
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is not violated, the corresponding penalty term is set to zero (i.e. penalty value cannot be

negative). In this standard implementation 1-point crossover operator is used with 0.9 crossover

probability, and bitwise mutation operator is used with 0.01 probability.

Different from the GA-Penalty, in GA-Feasible method, infeasible solutions are not allowed

in a population. Therefore, initial population is randomly generated while considering feasi-

bility. In this method, uniform 0.5 crossover operator is used to prevent positional bias, and

mutations are applied using bitwise mutation operator. However, these operators are modi-

fied such that they output only feasible solutions. This is achieved as follows: in the uniform

crossover operator, corresponding bits of the two children are swapped if swapping bits does

not introduce infeasibility to any of the child. Similarly, in the mutation operator bit mutation

is applied if it does not cause infeasibility to the corresponding child. Since this modification to

the mutation operator reduces the probability of a change in a solution, the bitwise mutation

probability value is set to a higher value of 0.1 in this method.

In the third method, GA-Repair, a repair function is used for repairing infeasible solutions

before evaluating their fitness values. The repair operation has two phases. In the first phase,

for a given infeasible solution the subbids which cause violation in Eq.(2)-(4) are rollbacked, and

in the second phase, the remaining satisfiable subbids of the bidders are committed. The order

of the subbids to be rollbacked and committed is determined randomly to maintain diversity.

Although the solution becomes feasible after the first phase, the second phase ensures that all

solutions in a population are located at the border of the feasible region of the corresponding

problem instance. The motivation is that the optimal solution is also located this border. In this

method, since solutions are allowed to be infeasible until they are evaluated, standard uniform

0.5 crossover operator and bitwise mutation operator with 0.1 probability are used.

For all the GA methods, binary tournament selection method is used for the mating pool

selection process, and the stopping criterion is determined to stop if no improvement in the best

solution is observed in the last 100 generations.

The performances of these three methods are also measured on the same test suite as the

proposed heuristics. For each method, populations sizes of 50 and 100 were used. Each method

is given a wall-clock running time limit of 60 minutes for each instance. The comparison of the

mean goodness of the solutions found by the GA based heuristic methods and by the proposed

problem specific heuristics is given in Figure 4.
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Figure 4: Mean goodness values of the GA based heuristic methods with population sizes 50
and 100, and the proposed problem specific heuristic methods.

For the optimally solved instances, mean goodness values of GA based heuristics vary ap-

proximately in between 54% and 59%, GA-Repair providing better results on average than

the other GA-based methods. On the other hand, for the relatively more difficult sub-optimally

solved instances, GA-Feasible method provides the best results on average among the GA-based

methods with a mean goodness value of approximately 120%. Increasing population size from

50 to 100 has minimal impact, causing an insignificant increase in the mean goodness values.

The proposed heuristics, however, provide significantly better results than the GA-based

methods with mean goodness values approximately in between 90% and 96% for the optimally

solved instances, and in between 160% and 215% for the remaining sub-optimally solved in-

stances.

The mean running times of the GA-based methods and the proposed heuristics for all the

test instances are compared in Figure 5. GA-Repair method takes longer compared to the

other two GA-based methods probably because of the expensive repair operation carried out

for each infeasible solution. The impact of increasing the population size from 50 to 100 is also

observed in this case, causing approximately twofold increase in the mean running times for

each GA-based algorithm. It is observed that the proposed problem specific heuristics provide

results faster on average than the GA-based methods with an exception for SSIMP-Utility when
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Figure 5: Mean running times of the GA based heuristic methods with population sizes 50 and
100, and the proposed problem specific heuristic methods for all problem instances.

compared to GA-Penalty method using a population size of 50.

The Total Utility Gain Provided by the DABC Model

The features of the DABC model were explained in the previous sections in detail. By means of

these features, the DABC model aims to increase the economic welfare of the participants. In

order to estimate possible welfare increase with respect to the currently used traditional market

mechanism, a simulation experiment was conducted. In this experiment, each optimally solved

test instance was simulated under the following traditional market rules:

• Initially each buyer has a budget equal to her spending limit.

• A buyer can purchase a good she is interested only if the good was not sold and the buyer

has enough budget. If this is the case, a bidder may initiate a transaction whenever she

wants. Transactions are executed in a first-come-first-served manner.

• When a buyer purchases a good, an amount equal to its price is transferred from the buyer

to the corresponding seller.

• The simulation ends when no buyer can purchase any more goods they want.

For each test instance, the simulation was conducted 100 times with a different random

order of purchase requests and the mean total utility gain was calculated. The utility of a
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Figure 6: Mean improvement in the total utility gain using the DABC model over the first-come-
first-served approach-based market simulation for the optimally solved test cases. Horizontal
bars indicate the standard error of the corresponding sample.

transaction was assumed to be the same as in the DABC model. The total utility values for the

test instances were compared to the total utility values obtained using the DABC model.

The results of this experiment which are grouped into the spending limit ratios can be seen

in Figure 6. When the participants have initially small budgets, i.e. when the spending limit

ratio is small, the mean improvement in the total utility is observed as much as approximately

127%, meaning that the total utility obtained using the DABC model is approximately 2.27

times of the simulation.

Although the improvement rate reduces as the spending limit ratio increases, the improve-

ment in the case of 75% spending limit ratio is also quite high with a value higher than 75%.

Overall mean improvement for all optimally solved test instances is 95%. That is, almost two-

fold of improvement in the total utility on average is observed when the DABC model is used

for these test instances using the above-mentioned simulation rules.
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7 Discussion and Conclusion

In addition to providing strong environmental benefits, development of secondhand markets also

increases overall economic welfare regardless of whether they shift the demand for new goods

(Thomas, 2003). Although many Internet-based secondhand marketplaces have emerged in the

last two decades increasing the trading volume of used goods, as also stated by Clausen et al.

(2010), more potential is yet to be captured. Accordingly, this paper introduces the DABC

electronic market model which aims to attract more participants to the secondhand markets

and to increase their economic welfare.

The winner determination problem of the DABC model is proven to be NP-hard, and there-

fore, three problem specific heuristic methods are proposed each of which can be used with

different sorting criteria. Based on an experiment conducted on a large test suite, the SSIB

heuristic with the utility sorting criterion provides results within only approximately 6% of the

optimum in less than half a second on average even for the largest test cases including 20,000

bidders. Thus, the SSIB heuristic is considered to be highly scalable which can be used in mar-

kets with hundreds of thousands of participants. The more sophisticated heuristic method, the

SSI method using the linear relaxation values sorting criterion, on the other hand improves the

quality of the solutions by approximately 2.5% on average providing results within less than 4%

of the optimum. The running time of this heuristic, however, also increases to approximately

220 seconds for large test cases and to 53 seconds on average.

This study also presents another experiment for assessing possible improvement in the total

utility to be obtained when the DABC institution is used instead of the current traditional

market institution. The results indicate an improvement rate of approximately 95% in the total

utility on average for the problem instances in the test suite, where the lowest mean improvement

rate being 78 % if the bidders have more budget initially and being approximately 127 % if their

initial budgets are low. This improvement is considered to occur due to the following features

of the model: Firstly, in the DABC model, asks and bids are collected during a trading round

and then the global optimal trading pattern is found, i.e. a batch processing is done, instead of

on-line processing in the first-come-first-served based traditional markets. Secondly, by enabling

the income to be obtained from the sold goods to be used for purchases, the model can extract

feasible trading patterns which are otherwise not possible.
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As a conclusion, it is considered that the demonstrated features of the DABC model would

be useful increasing the potential of the used good trading and by means of the proposed efficient

heuristic methods, the DABC model can be used in very large-scale Internet-based electronic

markets with tens or even hundreds of thousands of participants. However, as a future work a

more detailed economic analysis of the model would provide more insight into the efficiency of

the DABC model when used in real-world markets.
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