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Abstract

Resale markets in which secondhand new and used goods are traded play an im-

portant role in circular economy with significant economic and environmental benefits.

This study proposes a preference-based posted price electronic market model for re-

sale markets which features several mechanisms to improve the market outcome. The

proposed model allows market participants to post sales and purchase orders simul-

taneously inside a trading round which also enables participants to use the revenue

obtained from the items to be sold to purchase other items in the market. Besides,

each participant is allowed to declare a budget constraint which restricts the amount

that the participant will spend in the market to prevent a possible budget deficiency.

Furthermore, the model also allows participants to declare their preferences of substi-

tutabilities in their orders. In this study, the proposed model is formally defined, the

corresponding market clearing problem is formulated as a hierarchical multi-objective

linear integer program to provide fair allocation between the participants. Four differ-

ent objective functions are proposed, and their outcomes are compared to the current

market system. Since the clearing problem is NP-Hard, several heuristic methods in-

cluding ant colony optimization, artificial bee colony and genetic algorithms along with

problem-specific operators are proposed. The performance of the model is statistically

analyzed based on several experiments. The genetic algorithm using the proposed

problem-specific operators provides solutions within 3% of the optimal objective val-

ues and within 1% of the optimal fairness on average. The results also indicate that

the model provides improved market outcomes and fair allocation of items among

the participants, and thus it has a potential to contribute to the growth of circular

economy.

Keywords: Resale Market; Circular Economy; Ant Colony Optimization; Artificial Bee

Colony; Genetic Algorithm.
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1 Introduction

Recent advances in information technology have made a major impact on the functions of

markets and provided an ability to shift from the traditional physical markets where the

traders meet at a certain place and at a certain time for exchanging commodities, to the

electronic markets (e-market) [1]. The key feature of an e-market is that it brings multiple

buyers and sellers in contact by weakening time and space restrictions [2]. Therefore, an

e-market has the potential of attracting more participants than a physical market. For

instance, eBay, the world’s largest online market, has more than 180 million active users

globally [3] and although established in 1995, by 2001 it became the third-ranked website

in which the users spend their time online [4]. Another example is Alibaba.com, the

world’s biggest business-to-business market which has more than 670 million active users

[5]. Additionally, e-markets allow increased product variety compared to their physical

counterparts. For instance, according to the study of Brynjolfsson et al. [6], Amazon and

Barnes and Noble have 2.3 million books listed on their online markets whereas a typical

physical bookstore has only 40,000 to 100,000 titles. Similarly, Wal-Mart supercenters

which occupy an area of up to 230,000 square-feet have at most one-sixth of the available

items in their online version, walmart.com. Brynjolfsson et al. [6] also show that the gain

of the consumers from the increased product variety can be up to 10 times higher than the

gain obtained from the price reduction in e-markets. Furthermore, an e-market can also

reduce buyers’ search costs to obtain information about the product offerings of sellers

[7, 8]. This increases the allocative efficiency of the market, i.e. the efficiency with which

a market is allocating resources [9].

This study focuses on online resale e-markets for durable goods in which used goods,

as well as new ones, are traded. Resale markets for durable goods constitute a significant

share in the overall economy. For instance, according to the thredUP 2019 Resale Report,

the market size for retail apparel in the US was estimated as $24 billion in 2018 and

expected to grow to $51 billion in 2023 with an annual growth rate of more than 15% [10].

The increasing popularity of online apparel resale markets such as Depop, Poshmark, and

threadUP contribute to this growth. Again, the thredUP 2019 Resale Report states that

56 million women in the US purchased used apparel in 2018 whereas this number was only
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4 million in 2017. Note that during the five-year period from 2017 to 2022, retail apparel

is expected to grow only 2% annually (from $360 billion to $400 billion) [11]. Another

resale market example could be the secondhand luxury goods market with an estimated

volume of more than $27 billion globally in 2018 and again the market volume is estimated

to increase approximately 12% annually during the 2019 - 2024 period [12]. Furniture is

also a popular type of durable goods which can have high resell value. In 2017, the market

size for secondhand furniture was estimated at $25 billion globally.

Aside from the contributions to the global economy, resale markets also have significant

environmental benefits compared to retail markets through the trading of used goods.

Trading of used goods is an integral part of the Circular Economy which is aimed at the

reusing of resources to reduce waste [13, 14]. It saves on the number of resources needed

to produce the goods that would have otherwise been purchased in the retail market. For

instance, growing cotton for producing a pair of jeans requires approximately 7 tons of

water which can be saved when the product is reused by another person [15]. Reducing

the resources used directly results in reduced carbon emissions. According to the research

conducted by Oxfam, in the UK more than two tonnes of apparel are being purchased in the

retail market each minute which corresponds to approximately 50 tonnes of carbon being

released to the atmosphere at every minute [16]. Another example is Schibsted’s Annual

Report [17] which estimates that participants of Schibsted’s secondhand marketplaces have

saved more than 20 million tons of greenhouse gas through used good trading.

The economic and environmental importance of resale markets constitutes the motiva-

tion of this study which is to provide a market model for making the resale markets more

pervasive to contibute the growth of circular economy. Yet this paper introduces a fair,

preference-based posted price electronic market model, called the PPBM model, which is

designed especially for resale markets. In this model, each market participant can have

both seller and buyer roles, that is she can post any number of sales and purchase orders

in the market simultaneously inside a single trading round. A sales order includes the

description of the item to be sold along with the price that the seller requests. The model

considers each item to be sold by sellers as a unique item to allow buyers to distinguish

the items to be sold by different sellers. However, if a buyer does not distinguish some

items in the market, then the model also allows the buyer to declare a list of alternative
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items in her purchase order which indicates that the buyer is interested in having only one

of these items. For instance, a buyer may not distinguish the edition, condition (e.g. like-

new or good) or cover type (hard-cover or soft-cover) of a book, but another buyer may.

Furthermore, if a buyer considers several items as alternatives but if she is not indifferent

to these items, the model also allows her to declare an order of preference for these items

so that if possible, the most preferred item is allocated to her. This mechanism can also

be used for sales orders so that the items of a seller are sold in the order of preference

declared by the seller.

As mentioned above, the PPBM model is based on the posted-price mechanism so

that sellers define the prices of items they want to sell, and the transactions occur at

these prices. Since the prices of the items are fixed, there may be multiple buyers who are

willing to buy the same items or there may be multiple sellers of items that buyers consider

as alternatives. To provide fairness between the participants of the market, the model

comprises a mechanism that distributes the total trading volume as evenly as possible

between the participants considering their sales and purchase orders.

Finally, since a participant can sell and purchase items simultaneously inside single

trading round, the model also enables participants to spend the revenue to be obtained

from the items that will be sold for purchasing other items during the market clearing

process without requiring any participant intervention. As a part of this mechanism, the

participants can also define budget constraints so that the maximum amount of money

that each participant may spend in the market is guaranteed to remain within her budget.

This mechanism helps to increase the trading volume without requiring a large amount of

cash flow in the market and at the same time, it encourages the participants to submit

purchase orders freely without a budget deficit risk.

Further details and the benefits of the proposed model are explained in the next section.

Section 3 introduces the motivation for implementing the posted price mechanism in the

model and provides a comparison to the previous work of the author. In Section 4, the

model is formally defined, and the corresponding market clearing problem is defined. This

problem is then modeled as a multi-objective linear integer program. Section 5 introduces

four different objective functions that can be used directly or extended for different market

types. It is shown that the market clearing problem is intractable, and consequently,
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several heuristic solution approaches are introduced in Section 6. The performances of the

proposed solutions are measured on a large test suite, and the statistically analyzed results

of these experiments are presented in Section 7. This section also includes the empirical

assessment of the outcomes of the model using the proposed objective functions compared

to the current market system. Finally, the paper concludes in Section 8.

2 The PPBM Model

In this section, an example market scenario for the PPBM model is going to be introduced,

and the market rules of the model are going to be explained in detail. In the example

scenario, which is illustrated in Figure 1, there are four participants who post sales and

purchase orders for seven items in total. Each sales order consists of the proper description

of an item and the price that the seller of the item requests for. For instance, Participant

1 declares that she wants to sell Item A and Item B for e18 and e36, respectively.

Participant 3, on the other hand, does not post any sales orders, meaning that she has

only a buyer role in the market. In addition to the sales orders, each seller may also declare

an order of preference for the items she wants to sell in the market. For instance, In the

examples scenario Participant 1 declares the following order of preference for her items:

Item B � Item A

which means that she prefers, of course, all two items to be sold in the market, however,

if only one could be sold, she prefers that Item B to be sold instead of Item A. Similarly,

Participant 2 states that if only one of her items could be sold, then she prefers Item C to

be sold. If two of her items could be sold, then she prefers Item C and Item E over Item

D.

A purchase order in the model consists of a list of a non-empty subset of items available

in the market which indicates that the participant who posts the purchase order wants

to buy one of the items in that list. For instance, Participant 1 declares that she wants

to buy one of the items D, E, and F. However, she also submits a second purchase order

for Item G, indicating that she also wants to purchase Item G in addition to one of the
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Participant 4

Participant 2

Participant 3

Participant 1

Participant 4

Participant 2

Participant 3

Participant 1

1. Item A for €18

2. Item B for €36

3. Item C for €20

4. Item D for €10

5. Item E for €38

6. Item F for €12

7. Item G for €28

Sales Orders

-----

1. Item A for €18

2. Item B for €36

3. Item C for €20

4. Item D for €10

5. Item E for €38

6. Item F for €12

7. Item G for €28

Sales Orders

-----

1. Item D or Item E or Item F

2. Item G

3. Item A or Item B

4. Item F or Item G

5. Item B or Item C

6. Item A

Purchase Orders

1. Item D or Item E or Item F

2. Item G

3. Item A or Item B

4. Item F or Item G

5. Item B or Item C

6. Item A

Purchase Orders Orders of Preference 
(Sales Orders)

-----

Item B ≻ Item A

Item C ≻ Item E ≻ Item D

Item G ≻ Item F

Orders of Preference 
(Sales Orders)

-----

Item B ≻ Item A

Item C ≻ Item E ≻ Item D

Item G ≻ Item F

Item B ≻ Item A

Orders of Preference
(Purchase Orders)

Item D ≻ Item G ≻ Item F ≻ Item E

Item F ≻ Item G

Item C ≻ Item A ≻ Item B

Item B ≻ Item A

Orders of Preference
(Purchase Orders)

Item D ≻ Item G ≻ Item F ≻ Item E

Item F ≻ Item G

Item C ≻ Item A ≻ Item B

≤  €10

≤ €6

≤ €28

≤ €0

Budget
Constraints

≤  €10

≤ €6

≤ €28

≤ €0

Budget
Constraints

Figure 1: An example scenario illustrating the PPBM model.

items D, E, and F. Thus, when the market is cleared, she can purchase at most two items.

A participant can post any number of purchase orders. Similar to the sales orders, each

participant can declare an order of preference for the items she wants to purchase. For

instance, as explained above Participant 1 is interested in four items, D, E, F, and G,

among which she wants to purchase at most two items. She declares the following order

of preference:

Item D � Item G � Item F � Item E

indicating that she prefers to purchase Item D over Item G, Item G over Item F, and so

on. Thus, she would be highly satisfied if she can purchase Item D and Item G in the

market.

If a participant is indifferent to two or more items in her purchase orders, any default

order of these items (e.g. based on the system assigned id of items) can be used. Note

that although a purchase order limits the number of items to be purchased to one, this

does not violate the generality of the model. If a participant wants to purchase more than
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one item in her purchase order, the corresponding purchase order can be duplicated as

many times as necessary. Purchase orders of a participant are not necessarily unique in

this model and a participant can post any number of purchase orders.

Unless identical instances of a product are sold by a single seller, buyers in the market

may differentiate the instances posted on the market based on several factors such as

the location of the seller, the reputation of the seller, shipping fees and delivery times,

conditions of used items, editions/versions of items, available payment options, and the

return policy. To handle different preferences of the participants, the model lets the

participants with buyer roles decide on the substitutability of items. Therefore, each item

posted in the market is treated as a unique item even if there are multiple instances of the

same product exist in the market. However, as described above, the model also allows a

buyer to group a number of items inside a purchase order to indicate that she considers

these items substitutable. If the buyer is not indifferent to these items, the model also

allows the buyer to prioritize these items by declaring an order of preference.

In addition to sales and purchase orders, each participant can further declare a bud-

get constraint covering all her transactions in the market. For instance, in the example

scenario, Participant 1 declares that she wants to spend at most e10 in the market. This

limit restricts the trade so that the participant can only buy Item D unless her items are

sold first. Participant 4, on the other hand, declares a zero budget limit meaning that she

would be able to purchase one or more items in the market only if at least one of her items

is sold.

The PPBM model being a two-sided market model in the sense that each participant

can post both sales and purchase orders inside a trading round, introduces the possibility

of using the revenue of a participant in the market as a budget for purchasing new items.

In the current market system, if a participant does not have enough money to purchase the

items she wants, she has to first sell one or more of her items to obtain the required budget

for purchasing. This requirement would prevent potential trading to occur between the

participants with limited budgets in the current market system. However, in the PPBM

model, trading patterns including the participants with limited budgets can be found

and initiated. The benefit of this feature can be seen in the example scenario. Figure 2

depicts the outcome of the current market system. Based on the declared budget limits of
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Participant 1 Item D for €10  €0

Sells Buys Balance

Participant 2

Participant 3

Participant 4

 €16

 €16

 €12

----- Item F for €12

Item F for €12

-----

-----Item D for €10

-----

Figure 2: Market outcome of the current market system for the example scenario illustrated
in Figure 1. Note that the balance values include the initial balance values determined by
the budget limits of the participants.

the participants, only two participants can purchase items in the current market system.

Participant 1 purchases Item D for e10 and since Participant 3 prefers Item F over Item

E, she purchases Item F for e12. Thus, two items are exchanged in the market with a

total volume of e22.

In the market outcome of the PPBM model which can be seen in Figure 3, however,

six out of seven items are traded with a total trading volume of e124 which demonstrates

the benefit of the model. The budget constraint mechanism ensures that none of the

participants has a budget deficit, i.e. negative balance, at the end of the market clearing

process.

The implementation of the market mechanism may vary according to the market type,

however, in a typical implementation, there can be three periods inside a trading round.

In the first period, the participants post their sales orders and their orders of preference to

the system. Thus, at the end of the first period, the information for the items to be sold

in the market becomes available. In the second period, the purchase orders and orders of

preference are collected from the participants, the participants may also modify or retract

their purchase orders during this period. In the third period, the market is cleared using the

market clearing process which is described in Section 4. The orders which are failed to be

satisfied can be transferred to the next round of the market depending on the participants’
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Participant 1
Item A for €18

Item B for €36

Item D for €10

Item G for €28
 €26

Sells Buys Balance

Participant 2

Participant 3

Participant 4

Item C for €20

Item D for €10
Item B for €36  €0

 €16

 €2

----- Item F for €12

Item F for €12

Item G for €28

Item C for €20

Item A for €18

Figure 3: Market outcome of the PPBM model for the example scenario illustrated in
Figure 1. Note that the balance values include the initial balance values determined by
the budget limits of the participants.

requests. The length of the periods should be determined based on the number of sales

and purchase orders collected. The longer periods provide increased allocative efficiency

while reducing market throughput.

3 Auctions vs. Posted Prices

Typically, e-markets provide one or both of the following mechanisms for the trading of

items: auction mechanism and posted-price (fixed-price) mechanism. For instance, eBay

offers both of these mechanisms, therefore it becomes an issue for the sellers to decide

which mechanism to be used for selling their items. There are many studies even before

the Internet era indicating that auctions provide higher expected revenue to the sellers

(see, for example, the work of Bajari and Hortaçsu [18] for a review). Economist [19]

predicted that the Internet would be “creating the possibility of a permanent worldwide

bazaar in which no prices are ever fixed for long, all information is instantly available,

and buyers and sellers spend their lives haggling to try to get the best deals”. Therefore,

auctions were the dominant preferred mechanism in the early 2000’s among the sellers on

eBay. The proxy bidding mechanism offered by eBay also contributed to this high usage

of the auction mechanism which allows buyers to set a maximum price of their bids, and

let the system adjust the price of a bid automatically in case another buyer offers a higher
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price. This mechanism reduces the necessity for the bidders to pay continuous attention

to the auction [4].

However, the mechanism choices of sellers for their listings have changed dramatically

since then. Einav et al. [4] has analyzed the propriety data obtained from eBay starting

from January 2003 till January 2016 to present the average daily share of auction-based

listings to all listings, i.e. the number of both auction-based and posted price listings. At

the beginning of 2003, the share of auction-based listings was higher than 95%. This ratio

gradually decreases to less than 10% over the years. At the beginning of 2016, more than

90% of all listings posted on eBay were posted price listings. This observation motivated

some researchers to further analyze sellers’ behaviors. Zeithammer and Liu [20] analyzed

Canon digital camera listings on eBay in September and October 2005 and found out

that sellers with large stocks mostly prefer posted price listings. Hammond conducted

a similar study for compact disc sales on eBay [21, 22]. He concluded that the decision

of mechanism selection of a seller depends on her outside options. Sellers with higher

selling opportunity cost favor posted price listings, and sellers with less opportunity cost

favor auctions. Bauner [23] analyzed eBay listings for Major League Baseball Tickets.

His findings indicate that sellers would prefer a market with only posted price listings

allowed over the markets supporting both posted price and auction listings. The reason

is that sellers’ surplus in posted price only market would be 6.4% higher than in markets

supporting both mechanisms. Further discussion on this subject can be found in [4].

The recent trend that the sellers prefer the posted price mechanism over the auction

mechanism is the main reason for proposing a posted price-based model in this study. In

the previous work [24], the author of this paper proposed a double auction-based market

model, called the DABC model, considering the theoretical advantages of the auction

institution. Similar to the PPBM model, the DABC model includes a budget constraint

mechanism so that the bidders in the DABC market cannot have a budget deficit. However,

the pricing mechanisms used in these models differ significantly. In the DABC model, each

seller submits one or more asks which include the item to be sold and the associated ask

price which indicates the minimum price she is willing to sell the item. Every buyer,

on the other hand, submits one or more bids including an item to be purchased and the

associated bid price which indicates the maximum price the buyer is willing to buy the
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item for. The utility of a transaction is defined as the difference between the bid and

ask prices for an item. The transaction occurs at a price that is defined by the k-DA

policy [25]. The DABC model has a single objective function which is to maximize the

total utility of the bidders. The PPBM model which is proposed in this study is a multi-

objective model that includes a mechanism for participants to declare their preferences

for the items they want to sell and purchase and a further mechanism to provide fairness

between the market participants. Since the market clearing problems are also different for

both models, the experiments and the corresponding market clearing algorithms are also

substantially different.

However, both models complement each other to attract more participants to a resale

market. As eBay offers both auction and posted price mechanisms to its users, a resale

market maker can implement both the DABC and the PPBM models and offer both

mechanisms to the market participants.

Finally, although the proposed PPBM model can be said to utilize a hidden bartering

mechanism through enabling the income of the items sold in the market to be used for

purchasing another items through the budget constrain mechanism, the mechanism of the

PPBM model is different from that of the pure bartering based models introduced in [26–

28] which aim to extract barter cycles in the market. In the PPBM model, since an item is

not exchanged (bartered) for another item, only budget constraints are applied, and pure

barter cycles are not found. This also reduces the difficulty of finding “double coincidence

of wants” which is observed in direct bartering mechanisms [29].

4 Mathematical Definition and Formulation of the PPBM

Model

The PPBM model can be defined formally as follows: let

• H = {h1, h2, . . . , hm} be the set of m participants in the market;

• Si be the set of sales orders that a participant hi posts in the market, where a sales

order sij ∈ Si is a two tuple, sij = (tij , p(tij)), in which tij is the item put for sale

and p(tij) is the price of the item tij (1 ≤ i ≤ m, 1 ≤ j ≤ |Si|);
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• TSi = {ti1, ti2, . . . , tiu} be the preference-ordered set of all items to be sold by the

participant hi which are extracted from Si. The order of TSi is defined as (ti1 �

ti2 � . . . � tiu), and tix � tiy means that the participant hi prefers the item tix to

be sold rather than the item tiy if only one item can be sold (1 ≤ i ≤ m, u = |Si|,

1 ≤ (x, y) ≤ u)

• Oi be the set of purchase orders that the participant hi posts in the market, where a

purchase order oik ∈ Oi is defined as a set of z items, oik = {tik1, tik2, . . . , tikz}, such

that the participant hi is willing to buy at most one of the items in the set oik.

• TPi = {ti1, ti2, . . . , tiv} be the preference-ordered set of all items to be purchased

by the participant hi which are extracted from Oi. The order of TPi is defined as

(ti1 � ti2 � . . . � tiv), and tix � tiy means that the participant hi prefers to purchase

the item tix rather than the item tiy (1 ≤ i ≤ m, v =
∑

i,k |oik|, 1 ≤ (x, y) ≤ v)

• O = {o1, o2, . . . , oy} be the set of all purchase orders in the market which is defined

as O =
⋃m

i=1Oi (y = |O|);

• finally, mi be the maximum amount of money that the participant hi wants to spend

in the market (mi ∈ R+ ∪ {0}, 1 ≤ i ≤ m).

The budget Bi of a participant hi is then defined as:

Bi = ri − ei +mi (1)

where ri is the total revenue of the participant obtained from the items sold, and ei is

the total expenses of the participant for the items purchased in the market.

A purchase order oik of a participant hi is called executable if

• there exits at least one item, tikx ∈ oik, which is currently not sold;

• the cost of the item, tikx, is within the budget of participant hi (p(tikx) ≤ Bi);

• the participant hi has not yet purchased any other item tiky ∈ oik for this purchase

order (note that an item can be requested in more than one purchase order of a

participant).
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Given these definitions, the market clearing problem (MCP) of the PPBM model is

defined as finding the maximum cardinality set of mutually executable purchase orders

such that the weighted sum of the executed sales/purchase orders are maximized.

The MCP is formulated as a linear integer program by introducing the following binary

variable:

xikx =


1 the item tikx is purchased in the purchase order oik of

the participant hi

0 otherwise

The linear integer program of the MCP is as follows:

Primary Objective: max z =
∑
hi∈H

∑
oik∈Oi

∑
tikx∈oik

wikx xikx (2)

Secondary Objective: min
∑
hi∈H

∣∣∣∣∣∣ z
∗

|H|
−
∑

oik∈Oi

∑
tikx∈oik

wikx xikx

∣∣∣∣∣∣ (3)

s.t.
∑

tikx∈oik

xikx ≤ 1 (hi ∈ H, oik ∈ Oi) (4)

∑
hi′∈H

∑
oi′k∈Oi′

∑
tij∈oi′k

xikx ≤ 1 (hi ∈ H, (tij , p(tij)) ∈ Si) (5)

ri − ei +mi ≥ 0 (hi ∈ H) (6)∑
hi′∈H

∑
oi′k∈Oi′

∑
ti′kx∈oi′k
∧

(ti′kx,p(ti′kx))∈Si

p(ti′kx)xi′kx = ri (hi ∈ H) (7)

∑
oik∈Oi

∑
tikx∈oik

p(tikx)xikx = ei (hi ∈ H) (8)

xikx ∈ {0, 1} (9)

ei, ri ≥ 0 (10)

In this formulation, Eq.(2) is the primary objective function that maximizes the weighted

sum of the executed orders based on the weight values wikx. By using different weight val-

ues wikx, different objective functions can be defined for the PPBM model, four of which

are explained in the next section. It is used to maximize the market throughput while
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preferably considering the preferences of the participants declared in their purchase or-

ders. However, since the prices of the items are fixed and each participant can submit any

number of purchase orders in the PPBM model, there may be different market outcomes

that give the same optimal primary objective value. Consider the following scenario which

illustrates this issue. Suppose that

• Participant 1 sells two items, Item A and Item B ;

• Participant 2 wants to purchase both items A and B by placing two purchase orders;

• Participant 3 also wants to purchase both items A and B by placing additional two

purchase orders;

• both Participant 2 and Participant 3 have enough budget to purchase both items A

and B.

It is obvious that there are four different outcomes of this scenario:

(i) Participant 2 purchases both items A and B ;

(ii) Participant 3 purchases both items A and B ;

(iii) Participant 2 purchases both Item A and Participant 3 purchases Item B ;

(iv) Participant 2 purchases both Item B and Participant 3 purchases Item A;

The outcomes (i) and (ii) are not considered fair since only one participant is satisfied.

Therefore, to select the fairest allocation (allocation (iii) or (iv) in this scenario 1) among

the optimal allocations with respect to the primary objective value, a secondary objective

is introduced in Eq.(3). This objective is used to minimize the sum of the absolute de-

viation of each participant’s contribution to the primary objective value from the mean

contribution of participants. Hence, the secondary objective aims to distribute the opti-

mal primary objective value (z∗) between the participants as evenly as possible to provide

fairness between the participants. Note that these two objective functions are hierarchical,

that is, the model should be optimized according to the primary objective function first.

1Depending on the preferences of participants 2 and 3, allocation (iii) can be preferred over allocation
(iv) or vice-versa. If both participants have the same preferences for items A and B, then both allocations
would be equally preferrable.
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When the optimal primary objective value z∗ is found, the model then should be optimized

according to the secondary objective function without degrading the optimal primary ob-

jective value z∗. In other words, in the first optimization step, a program consisting of

the primary objective function Eq.(2) and the constraints Eq.(4-10) is optimized to find

z∗ . Then, in the second optimization step, another program consisting of the secondary

objective function, the constraints Eq.(4-10), and a further constraint

z∗ · tol ≤
∑
hi∈H

∑
oik∈Oi

∑
tikx∈oik

wikx xikx (11)

is optimized. Note that after the first optimization step, none of the decision variables

are fixed. A constant tol factor that is close to 1 (e.g. a value of 0.9999) can be used to

prevent possible floating-point arithmetic errors which may cause the optimizer to falsely

return an infeasible solution error.

The constraints of the model are defined as follows. In the PPBM model, at most one

item can be purchased in every purchase order and this constraint is indicated in Eq.(4).

Eq.(5) prevents an item to be sold to more than one participant. Eq.(6) is the budget

constraint which ensures that no participant has a budget deficit. Eq.(7-8) define the total

revenue and the total expenses of each participant, respectively.

The Bank Clearing Problem (BCP) introduced in [30] is a specialization of the MCP

of the PPBM model (a BCP instance can be reduced in polynomial time to a limited MCP

instance such that only one item is requested in every purchase order, and each item is

requested in at most one purchase order). Since the BCP is proven to be NP-hard [30],

the MCP of the PPBM model is also NP-hard (in other words, the decision version of the

MCP is NP-complete). Even with only two participants, the MCP remains intractable.

5 Determining the Weight Values - Objectives of the PPBM

Model

As explained in the previous section, the primary objective of the PPBM model as seen

in Eq.(2) introduces the weight values wikx for each order to maximize the weighted sum

of the executed orders. Depending on these weight values, different objective functions
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can be defined for the PPBM model. In this work, four different objective functions are

introduced:

(i) Maximize the Number of Traded Items (PPBM-Items Traded): This objec-

tive function aims to maximize the number of items traded in the market, therefore

every weight value wikx is set to a constant value, e.g. to 1. So,

wikx = 1 (∀i, k, x). (12)

Since in each purchase order only one item can be traded, each item traded means one

purchase order and one sales order are executed. Therefore, this objective function

also maximizes the number of orders executed. Note that this function treats all

items to be sold and purchased equally.

(ii) Maximize the Trading Volume (PPBM-Trading Vol.): This objective func-

tion aims to maximize the trading volume of the market which is the sum of the

prices (or revenues, since each item in the market is considered as unique) of the

exchanged items in the market. Therefore, each weight value wikx is defined as the

corresponding price of the item tikx. So,

wikx = p(tikx) (∀i, k, x) (13)

Note that for a participant, this objective function prefers the most expensive item

to be sold or purchased by her to the rest of the items listed in her sales or purchase

orders given that she has enough budget.

(iii) Maximize the Preference Values Sum of Items Traded (PPBM-Pref. Sum):

Previous two functions aim to maximize either the total number of items traded or

the total trading volume of the market. Thus, they do not consider the order of

preferences of the participants for their sales and purchase orders.

This objective function, on the other hand, aims to maximize the total number of

items traded based on the preferences of the participants. To achieve this, each
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weight value wikx is defined as follows:

wikx = SPV (tikx) + PPV (tikx) (14)

where SPV (tikx) is the Sales Preference Value of the item tikx which is defined as

SPV (tikx) = max
i
|TSi| − rTSi(tikx) + σ, (15)

and PPV (tikx) is the Purchase Preference Value of the item tikx which is defined as

PPV (tikx) = max
i
|TPi| − rTPi(tikx) + σ. (16)

Note that rTSi(tikx) and rTPi(tikx) are the ranks of the item tikx in the ordered sets

TSi and TPi, respectively, and σ > 0 is the shift parameter. Recall that TSi and

TPi are the ordered sets of items that a participant hi wants to sell and purchase

respectively ordered according to the preferences of the participant hi. Thus, the

ranks of the first elements in the sets TSi and TPi are 1 and the ranks of the last

elements are |TSi| and |TPi|, respectively. The shift parameter σ ensures that the

sales and purchase preference values of the least preferred items are higher than 0.

A typical value of 1 for σ is used in this study which ensures that the preference

value of the least preferred item is 1.

(iv) Maximize the Blending of Trading Volume and Preferences of the Par-

ticipants (PPBM-Blended Obj.): This objective function blends two possibly

conflicting objectives in a single objective function which are the total trading vol-

ume and the sum of the preference values of the participants. Thus, in this objective

function, each weight value wikx is defined as follows:

wikx = α
p(tikx)

p
+ (1− α)

SPV (tikx)/SPV + PPV (tikx)/PPV

2
(17)

where α is the blending factor, p, SPV , and PPV are the mean price, mean sales

preference value and mean purchase preference value of the items, respectively. Since

the range of the prices of the items and the range of the sales and purchase preference
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values of the items can be different, normalized price and preference values are used

in this objective function. A typical value of 0.5 is used for α in this study which

provides equal importance to the total trading volume and the sum of the preference

values of the participants.

Note that each proposed primary objective function provides possibly different alloca-

tion of items in the market given the same set of posted sales and purchase orders. The

allocations provided by these objective functions are compared empirically in Section 7.

Depending on the market type, i.e. the type of the items sold in the market, price distri-

bution of the items, preferences of the participants, etc. one of these objective functions

or one of their variants can be used.

6 Solution Methods

In Section 4, the market clearing problem (MCP) was defined and formulated using linear

integer programming. Thus, a general-purpose mixed-integer programming solver can be

used to solve the MCP instances of the PPBM model. However, again as shown in the

same section, the MCP is an NP-hard problem, therefore it is not always possible to

find the optimum solution or even a feasible solution in a limited time. For this reason,

several local search (Hill Climbing and Iterated Local Search) and population-based (Ant

Colony Optimization, Artificial Bee Colony and Genetic Algorithms) heuristic methods

with varying complexities are proposed in this study for the MCP.

The proposed local search methods require a neighborhood relation to be defined for

searching the solution space systematically. Therefore, this study also introduces two

problem-specific neighborhood relations designed for the MCP. Besides the local search

methods, these relations also used inside the operators of the population based heuristic

algorithms. Therefore, before explaining the heuristic methods, first, the neighborhood

relations will be explained.

6.1 Neighborhood Relations for the MCP

To understand the proposed neighborhood relations, the definition of suborder should be

given first. In the PPBM model, each participant may post any number of purchase orders
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each of which is a set of one or more items listed in the market. A suborder is a partition

of a purchase order in which only one item is requested. For instance, in the example

scenario in Figure 1, Purchase Order 1 consists of three suborders, one for Item D, Item

E, and Item F, and Purchase Order 2 has only one suborder for Item G. A suborder is

considered as a data structure which comprises the item requested, the seller of the item

requested, the purchase order to which the suborder belongs, the owner of the purchase

order, and a flag indicating whether the suborder is executed or not.

Note that since in a suborder only one item is requested, each suborder is directly

associated with a single sales order through the item requested in the suborder. Thus,

executing a suborder means that the corresponding item is purchased by the participant

who posts the suborder, and hence the corresponding sales order of the seller is also

executed. Therefore, in the proposed solution methods, only the suborders of the purchase

orders are considered. Also note that the PPBM model enforces that at most one of the

suborders in a purchase order can be executed, that is executing a purchase order means

that executing one of the suborders of the purchase order.

Similar to the notion of executability for purchase orders, a suborder o is called exe-

cutable if

(i) the suborder o is not already executed;

(ii) the item requested in the suborder o is available (i.e. not sold);

(iii) there is no already executed suborder in the corresponding purchase order (i.e. the

purchase order to which the suborder o belongs).

(iv) the participant who posted the suborder o has enough budget to purchase the item

requested in the suborder o.

When a suborder o is executed,

(i) the suborder o is marked as executed;

(ii) the item requested in the suborder o is marked as sold;

(iii) the budget of the buyer is decreased by the price of the item requested in the suborder

o, and the budget of the seller is increased by this amount.
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Conversely, when a suborder o is undone, all the execution steps are undone as follows:

(i) the suborder o is marked as not executed;

(ii) the item requested in the suborder o is marked as available;

(iii) the budget of the seller is decreased by the price of the item requested in the suborder

o, and the budget of the buyer is increased by this amount.

Note that the budget of a participant is initialized to the maximum amount of money

that the participant wants to spend in the market at the beginning (see Section 4 for the

definition of the budget of a participant).

As introduced in Section 4, the integer programming formulation of the MCP requires

the decision variable xikx which denotes whether xth item in the kth purchase order of the

participant hi is purchased by this participant or not. Given the definition of suborder, it

is seen that xikx actually denotes whether the xth suborder of kth purchase order of the

participant hi is executed ot not. Thus, every solution of an MCP instance is a set of

executed suborders, and it can be represented as a binary string containing one bit for

each suborder which indicates whether the corresponding suborder is executed or not.

Based on this representation of a solution, a neighborhood relation can be defined quite

easily: a solution Sol′ is a neighbor of another solution Sol if only one bit is flipped in the

representation of the solution Sol, that is one of the suborders of Sol′ is undone if it was

already executed in Sol, or executed if it was not executed in Sol. Although the definition

seems straightforward to implement, there is an important issue to be handled such that

executing or undoing a suborder may result in an infeasible solution. Therefore, two

neighborhood methods are proposed which find only feasible neighbors of given solutions.

The pseudocode of the neighborhood method N1 is presented in Algorithm 1. Given

a solution Sol and a suborder ochosen which is to be flipped (i.e. executed or undone),

the method first checks whether the suborder ochosen is already executed or not. If it is

executed, the method undoes the suborder ochosen the steps of which are explained above.

However, this action may cause a budget deficiency for the owner of the item since her

item would be unsold. If this is the case, then, the method tries to close the deficit of this

participant (the owner of the unsold item) by executing the suborders in which an item
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of this participant is requested. These steps are summarized as executeOrders method

in Algorithm 2. Note that executeOrders method executes the suborders of the owner of

the unsold item in the descending order of weight values, that is the method first tries to

execute the order with the highest weight value. Also, the method stops executing the

suborders when the deficit is closed. If the deficit is closed, the neighborhood method N1

returns the new solution Sol′ as the neighbor solution of given solution Sol. However, if the

deficit cannot be closed, the neighborhood method returns neighborNotFound meaning

that it is not possible to obtain a neighbor of the given solution Sol by undoing the

suborder ochosen.

Input: The initial solution Sol, the suborder ochosen to be executed or undone.
Output: The neighbor solution Sol′ or neighborNotFound.
1: Set Sol′ ← Sol
2: if the suborder ochosen is already executed then
3: Undo the suborder ochosen
4: if the budget of the participant hx who owns the item requested in the suborder

ochosen < 0 then
5: {Improve the budget of the participant hx if possible}
6: Set budgetInDeficit←executeOrders(Sol′, hx, oexcluded = ochosen)
7: if budgetInDeficit then
8: return neighborNotFound {Unable to close the budget deficit}
9: end if

10: end if
11: return neighbor solution Sol′

12: else if the suborder ochosen is executable without budget control then
13: if the budget of the participant hy who posted the suborder ochosen < 0 then
14: {Improve the budget of the participant hy if possible}
15: Set budgetInDeficit←executeOrders(Sol′, hy, oexcluded = NULL)
16: if budgetInDeficit then
17: return neighborNotFound {Unable to close the budget deficit}
18: end if
19: end if
20: Execute the suborder ochosen
21: return the neighbor solution Sol′

22: end if
23: return neighborNotFound {ochosen is not executable}

Algorithm 1: Pseudocode for Neighborhood Method N1

However, if the suborder ochosen is not already executed, then the neighborhood method

N1 tries to execute the suborder ochosen. As noted above, to execute a suborder, conditions

(i)-(iv) should be satisfied. The method first checks whether the conditions (i)-(iii) hold

and if at least one of them is not satisfied, then the method fails to return a neighbor

solution. However, if the budget constraint, i.e. the condition (iv) does not hold, the
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method first executes the suborder ochosen which causes a deficit in the budget of the

participant who posted the suborder ochosen. Then, the method tries to close the budget

deficit of this participant through the method executeOrders which is described above. If

it succeeds, it returns the neighbor solution Sol′.

Input: The solution Sol′, the participant hx whose budget is in deficit, the suborder oexcluded to
be excluded

Output: The boolean flag budgetInDeficit indicating whether the budget of the participant hx
remains in deficit or not

1: Set budgetInDeficit←false
2: if the budget of the participant hx < 0 then
3: {Improve the budget of the participant hx by selling her items}
4: Set budgetInDeficit←true
5: Build the list Lx of suborders that request an item sold by the participant hx
6: Sort Lx according to weight values w of suborders in descending order
7: for all suborder ox in Lx do
8: if ox = oexcluded then
9: continue

10: end if
11: if the suborder ox is executable and budgetInDeficit then
12: Execute the suborder ox
13: if the budget of the participant hx ≥ 0 then
14: Set budgetInDeficit←FALSE
15: end if
16: end if
17: end for
18: end if
19: return budgetInDeficit

Algorithm 2: Pseudocode for executeOrders Method

The pseudocode for the neighborhood method N2 is presented in Algorithm 3. The

first part of the second neighborhood method N2 is same as N1 so that the method first

checks whether the suborder ochosen is already executed or not. If it is executed, the

method undoes the suborder ochosen and tries to close the possible budget deficit of the

owner of the item requested in the suborder ochosen. However, if the suborder ochosen was

not executed, the second neighborhood method N2 extends the first method N1 such that

besides trying to fix the executability condition (iv), the remaining conditions (ii) and

(iii) are also tried to be fixed to execute the suborder ochosen. Thus, if the item requested

is previously sold, then the corresponding suborder ox of a possibly different participant

which was executed before is undone, making the item available again. Then, the suborder

ochosen is executed without checking the remaining executability conditions.

Note that the actions of undoing the suborder ox and executing the suborder ochosen
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Input: The initial solution Sol, the suborder ochosen to be executed or undone.
Output: The neighbor solution Sol′ or neighborNotFound.
1: Set Sol′ ← Sol
2: if the suborder ochosen is already executed then
3: Undo the suborder ochosen
4: if the budget of the participant hx who owns the item requested in the suborder

ochosen < 0 then
5: {Improve the budget of the participant hx if possible}
6: Set budgetInDeficit←executeOrders(Sol′, hx, oexcluded = ochosen)
7: if budgetInDeficit then
8: return neighborNotFound {Unable to close the budget deficit}
9: end if

10: end if
11: return the neighbor solution Sol′

12: else
13: if the item tx requested in suborder ochosen is already sold in the suborder ox of a

participant hx then
14: Undo the suborder ox
15: end if
16: Execute the suborder ochosen
17: limitExceeded← ensureOrderLimit(Sol′, ochosen)
18: if limitExceeded then
19: return neighborNotFound {Unable to set the suborder limit of the order}
20: end if
21: if the budget of the participant hx who posted the suborder ochosen < 0 then
22: Set budgetInDeficit←executeOrders(Sol′, hx, oexcluded = NULL)
23: if budgetInDeficit then
24: Set budgetInDeficit←undoOrders(Sol′, hx, oexcluded = ochosen)
25: end if
26: if budgetInDeficit then
27: return neighborNotFound {Unable to close the budget deficit}
28: end if
29: end if
30: return the neighbor solution Sol′

31: end if

Algorithm 3: Pseudocode for Neighborhood Method N2
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do not introduce a budget deficit for the owner of the item since her item is sold again

to another participant who posted the suborder ochosen. However, it may cause a budget

deficit for the participant who posted the suborder ochosen which is handled in the last

part of the method.

The second issue with these actions is that after executing the suborder ochosen, the

limit of the purchase order Ox which includes the suborder ochosen may have been exceeded

such that two items may have been purchased in this purchase order. If this is the case,

then the method finds the other suborder ox which was already executed in the same

purchase order. After that, the method checks whether the budget of the participant who

sells the item requested in the suborder ox becomes deficit or not. If not, the suborder

ox is undone, and the limit issue is resolved. Otherwise, the neighborhood method N2

returns neighborNotFound. These steps of the neighborhood method N2 are summarized

as ensureOrderLimit method in Algorithm 4.

Input: The solution Sol′, the most recently executed suborder ochosen
Output: The boolean flag limitExceeded indicating whether the order limit constraint is

violated or not
1: Set Ox ← the order which comprises ochosen
2: Set limitExceeded← false
3: if the order Ox have two suborders that are already executed then
4: Set limitExceeded← true
5: Find the other suborder ox different than ochosen which is already executed in the order Ox

6: Set hy ← the participant who sells the item requested in ox
7: if the budget of the participant hy ≥ the price of ox then
8: Undo the suborder ox
9: Set limitExceeded← false

10: end if
11: end if
12: return limitExceeded

Algorithm 4: Pseudocode for ensureOrderLimit Method

The third and the final issue to be handled is the possible budget deficit of the partic-

ipant hx who posts the suborder ochosen. If the budget of the participant hx is in deficit,

as in the first method N1, the neighborhood method N2 tries to execute the suborders

which request an item of the participant hx to close the deficit. However, if the executed

suborders are not enough to close the deficit, unlike the neighborhood method N1, N2

tries to undo the already executed suborders posted by the participant hx as shown in

Algorithm 5 as undoOrders method. Undoing a suborder is only allowed if this action
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does not cause a budget deficit for the participant who sells the item requested in this

suborder. Note that unlike the executeOrders method, undoOrders method executes the

suborders in the ascending order of weight values, that is the method first tries to undo

the order with the lowest weight value. Also, the method stops undoing the suborders

when the deficit is closed. If all of these issues are resolved, i.e. the executability condi-

tions (ii)-(iv) are satisfied, the neighborhood method returns the neighbor solution Sol′.

Otherwise, neighborNotFound is returned.

Input: The solution Sol′, the participant hx whose budget is in deficit, the suborder oexcluded to
be excluded

Output: The boolean flag budgetInDeficit indicating whether the budget of the participant hx
remains in deficit or not

1: Set budgetInDeficit←false
2: if the budget of the participant hx < 0 then
3: {Improve the budget of the participant hx by undoing her already executed purchase

orders}
4: Set budgetInDeficit←true
5: Build the list Lx of suborders of the participant hx
6: Sort Lx according to weight values w of suborders in ascending order
7: for all suborder ox in Lx do
8: if ox = oexcluded then
9: continue

10: end if
11: if the suborder ox is already executed and the budget of the participant hx who owns

the item requested in the suborder ox ≥ the price of ox and budgetInDeficit then
12: Undo the suborder ox
13: if the budget of the participant hx ≥ 0 then
14: Set budgetInDeficit←FALSE
15: end if
16: end if
17: end for
18: end if
19: return budgetInDeficit

Algorithm 5: Pseudocode for undoOrders Method

As a summary, considering the bit string representation of solutions, the presented

neighborhood methods return a neighbor solution whose at least one bit is flipped com-

pared to the original solution. If flipping one bit makes the solution infeasible then both

methods take different measures to satisfy feasibility by flipping a set of other bits. Note

that the neighborhood method N2 is more complex than N1 causing possibly larger neigh-

borhood size for a given solution, however at the same time requiring more CPU power.
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6.2 Heuristic Methods for the MCP

In this study Hill Climbing, Iterated Local Search, Ant Colony Optimization, Artificial Bee

Colony and Genetic Algorithm based heuristic methods are proposed for the MCP. Since

they are well-known methods in the literature, they will be introduced briefly focusing on

the parameters and the necessary implementation details. Note that the software package

prepared for this study consists of more than 10,000 lines of code.

Hill Climbing (HC-best): This method starts with a given feasible solution (note that

all zero solution is also feasible) and checks its feasible neighbor solutions using one

of the proposed neighbor methods N1 or N2. If the best solution among the neighbor

solutions is better than the current solution, then the best solution is accepted as the

(new) current solution. Next, the method explores the (new) neighborhood of the

current solution for a better solution. The method continues in this manner until the

current solution is better than all the solutions in the defined neighborhood of the

current solution. The method returns this final current solution as the best solution

found. The pseudocode for this method is presented in Algorithm 6.

Input: The initial solution initialSol, the neighborhood method N(x)
Output: The best solution found currentSol.
1: Set currentSol← initialSol
2: Set isImproved← true
3: while isImproved = true do
4: Set isImproved← false
5: Set bestSol← currentSol
6: for all suborder ox in currentSol do
7: Set neighSol← N(currentSol, ox)
8: if neighSol = neighborNotFound then
9: continue {forall loop}

10: end if
11: if neighSol is better than bestSol then
12: Set bestSol← neighSol
13: end if
14: end for
15: if bestSol is better than currentSol then
16: Set currentSol← bestSol
17: Set isImproved← true
18: end if
19: end while
20: return currentSol {the best solution found}

Algorithm 6: Pseudocode for Hill Climbing Method
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Stochastic Hill Climbing (HC-random): In the stochastic variant of the hill climbing

method, instead of a deterministic search, a stochastic search is conducted in the

solution space. Thus, instead of finding the best neighbor solution to the current

solution, the method evaluates neighbor solutions which are determined using the

tournament selection method. In this selection method, a tournament vector of

neighbor solutions is prepared. If the best solution in this vector is better than the

current solution, it is accepted as the (new) current solution, otherwise, the current

solution remains the same. Then, another neighbor solution to the current solution

is generated by generating a new tournament vector. The method terminates if the

current solution does not improve after a predefined number of iterations which is

equal to the number of suborders in the given instance.

Iterated Local Search (ILS-best): Although runs fast, the hill climbing method has

a major drawback of getting stuck at the local optima. To avoid this to a degree,

the hill climbing method can be executed many times with different random initial

solutions which is called the hill climbing with random restarts method. In this case,

the method makes a random search in the space of local optima. Iterated local search

method searches this space of local optima intelligently [31].

The pseudocode for the iterated local search method as adapted to the MCP is

presented in Algorithm 7. Given an initial solution, the method first finds a local

optimum using the hill climbing method. If this local optimum is better than the

best local optimum found so far, then the best local optimum is updated. After

finding the local optimum, the method finds a new initial solution by undoing some

suborders of the found local optimum which are selected by using an adaptive prob-

abilistic mechanism. In this mechanism, for each already executed suborder of the

local optimum, a random number, called dice, is generated based on the continuous

uniform distribution in the range [0,1). If dice is less than or equal to the adap-

tive undoing probability value adaptiveProbV al, then the corresponding suborder

is tried to be undone. As noted in the neighborhood methods presented, undoing a

suborder may cause a budget deficit for the owner of the item sold, therefore, the

ILS-best method also tries to close this deficit by calling executeOrders method.
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If the deficit cannot be closed, then the method skips to the next already executed

suborder in the found local optimum.

The adaptive undoing probability value adaptiveProbV al is calculated as:

adaptiveProbV al = undoProbV al∗
(

1− weight value of ox
max weight value in all suborders

)
(18)

where undoProbV al = 0.5 is a parameter of the ILS-best method. Note that

adaptiveProbV al is close to the value of undoProbV al for the suborders with smaller

weight values and close to the zero for the suborders with higher weight values.

Therefore, the suborders to be undone are selected using inverse weight proportion-

ate selection.

Iterated Local Search with Stochastic Hill Climbing (ILS-random): This method

is the same as the ILS-best method with an exception of using the stochastic hill

climbing (HC-random) method instead of the hill climbing (HC-best) method for

finding the local optima of a given solution.

Ant Colony Optimization (ACO): The previous methods are improvement heuristic

methods that inputs an initial solution and try to improve this solution. However,

the Ant Colony Optimization (ACO) method is a swarm intelligence method that

works on a population of solutions.

The ACO method was first proposed by Dorigo et al. [32, 33] in the 1990s which is

inspired by the observations on the real ant colonies. It tries to mimic the ants’ search

for food, more specifically, ants’ method for finding the shortest path between a food

source and their nests. Initially, ants leave their nests and arbitrarily walk around

looking for a food source. During this search, they leave a substance called trail

pheromone on the ground marking their path. Ants can also smell the pheromone.

An ant coming out of its nest follows a path which it chooses probabilistically based

on the pheromone levels and reinforces the pheromone trail by leaving its pheromone

on the chosen path.

In this study, Ant Colony System [34, 35] based ACO method was used because of

its efficiency. The pseudo code of this method is presented in Algorithm 8.
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Input: The initial solution initialSol, the neighborhood method N(x), the number of maximum
local search iterations to be made if the solution does not improve returnAfterIter, the
probability value for undoing a suborder undoProbV al

Output: The best solution found bestLocalOptSol.
1: Set currentSol← initialSol
2: Set bestLocalOptSol← initialSol
3: Set iterationNo← 0
4: while iterationNo < returnAfterIter do
5: Set localOptSol←Hill Climb(currentSol, N(x))
6: if localOptSol is better than bestLocalOptSol then
7: Set bestLocalOptSol← localOptSol
8: Set iterationNo← 0
9: end if

10: Set newInitialSol← localOptSol
11: for all suborder ox in newInitialSol do
12: Set adaptiveProbV al← undoProbV al ∗ (1−weight of ox / maximum weight in all

suborders);
13: Set dice← a pseudorandom number from continous uniform distribution [0,1)
14: if the suborder ox is already executed and dice ≤ adaptiveProbV al then
15: Undo the suborder ox
16: if the budget of the participant hx who owns the item requested in the suborder

ox < 0 then
17: {Improve the budget of the participant hx if possible}
18: Set budgetInDeficit←executeOrders(newInitialSol, hx, oexcluded = ox)
19: if budgetInDeficit then
20: Undo all the changes made to newInitialSol in this iteration {the budget deficit

is not closed, restore the previous feasible state}
21: end if
22: end if
23: end if
24: end for
25: Set currentSol← newInitialSol {the budget deficit is closed, newInitialSol is feasible}
26: Set iterationNo← iterationNo+ 1
27: end while
28: return bestLocalOptSol {the best local optimum solution found}

Algorithm 7: Pseudocode for Iterated Local Search Method
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Input: The list of suborders O ← {o1, o2, · · · , of} of the purchase orders, the number of ants A,
the neighborhood method N(x), the maximum number of generations to stop if the solution
does not improve returnAfterIter, the pheromone elitist selection rate q.

Output: The best solution found Sbest.
1: Sbest ← {}
2: Set Sinitial ←Hill Climb({}, N(x))
3: γ ← TotalWeight(Sinitial) / 10
4: Initialize the pheromone values of all suborders −→p = 〈p1, p2, . . . , pf 〉 to γ
5: Set iterCount← 0
6: while iterCount < returnAfterIter do
7: for i← 1 to A do
8: {Construct solutions}
9: Set bestSolFound← false

10: Set Si ← {}
11: Set Oexecutable ← list of executable suborders in Si determined using N(x)
12: while Oexecutable is not empty do
13: Select ochosen among the suborders Oexecutable using the Elitist Component Selection

method with the probability q.
14: Execute the suborder ochosen in Si

15: {As a result of execution of the suborder ochosen, a new set of executable suborders
may exist becuase of the budget transfer.}

16: Set Oexecutable ← list of executable suborders in Si determined using N(x)
17: end while
18: if TotalWeight(Si) > TotalWeight(Sbest) then
19: Set Sbest ← Si

20: Set bestSolFound← true
21: end if
22: end for
23: for all pi ∈ −→p do
24: {Pheromone Evaporation}
25: Set pi ← 0.5 pi + 0.5 γ
26: if Suborder oi is executed in Sbest then
27: {Pheromone Update}
28: Set pi ← 0.5pi + 0.5 TotalWeight(Sbest)
29: end if
30: end for
31: if bestSolFound then
32: Set iterCount← 0
33: else
34: Set iterCount← iterCount+ 1
35: end if
36: end while
37: return Sbest {the best solution found}

Algorithm 8: Pseudocode for Ant Colony Optimization (Ant Colony System)
Method
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In this method, the initial pheromone value, γ, is calculated first. This value is found

by scaling the total weight value of a local optimum solution which is found using

the Hill Climb algorithm. The suborders, O, constitute the components of solutions.

Therefore, a pheromone value, pi, is used for each suborder in the problem instance.

All the pheromone values constitute the pheromone vector, −→p . Each component of

the pheromone vector, −→p , is initialized to the calculated initial pheromone value, γ.

After the pheromone vector, −→p , is initialized, a set of new solutions is generated

from scratch by using the Elitist Component Selection method [31] which represents

the walk of an ant in the colony. Therefore, the number of solutions to be generated

is same as the number of ants, A, which is a parameter of the ACO method. The

best solution found during this phase is stored as Sbest. After that, the pheromone

evaporation step is carried out. In this step, the pheromone value, pi, for each

component, i.e. suborder oi, is reduced using the following formula:

pi = 0.5 pi + 0.5 γ. (19)

Then, the pheromone elitist update step is carried out. In this step, for each executed

suborder in the best solution found sbest, the corresponding pheromone value pi is

incremented in accordance with the total weight value of the best solution found

Sbest using the following formula:

pi = 0.5 pi + 0.5 TotalWeight(Sbest). (20)

After the pheromone update step is completed, a new set of ants exit from their

nest looking for new food sources, that is, a new set of A solutions are generated.

The process stops when there is no improvement in the best solution found after 50

generations.

In this method, the Elitist Component Selection method [31], as mentioned above,

is used when generating solutions. In this method, a desirability value is calculated
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for each suborder oi using the following formula:

Desirability(oi) = pi Weight(oi)
2 (21)

where pi is the pheromone value of the suborder oi. Then, a solution is generated

from scratch by executing executable suborders one by one. The suborder to be

executed is determined as follows:

• with probability q = 0.9 (which is called the pheromone elitist selection rate),

among the executable suborders, the one with the highest desirability value is

selected;

• otherwise, the suborder to be executed is determined using tournament selection

method among the executable suborders.

This process continues until there is no executable suborder is left in the solution and

this guarantees that all the generated solutions reside at the border of the feasible

region. Note that due to the budget constraints, executing a suborder may cause

previously inexecutable suborders to become executable, therefore after executing a

suborder, the list of executable suborders should be updated.

Artificial Bee Colony (ABC): Introduced in 2005, Artificial Bee Colony (ABC) method

[36, 37] is another swarm intelligence method which is inspired by the behavior of bee

colonies. An artificial bee colony consists of employed bees, onlookers and scouts.

Firstly, each employed bee is assigned to a food source and it looks for a new food

source which is in close vicinity to the assigned food source. If the employed bee

finds a new source, then it compares its nectar amount to the nectar amount of the

assigned food source. If the former is higher, then the employed bee forgets the

position of the assigned source and keeps the position of the new one in its memory.

Otherwise, it keeps the position of the assigned source. When all employed bees fin-

ish searching, they return to their hive and inform the onlookers about the positions

and the nectar amounts of the food sources in their memory. Each onlooker, then,

selects one of the food sources considering the nectar amounts of the sources such

that a source with higher amount of nectar has a higher probability to be selected.
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Then, the onlookers look for another food sources which are in close vicinity of the

selected food sources. Again, they memorize the locations of the new sources if they

contain higher nectar amount than the selected sources. If a new source cannot be

found in vicinity of a food source after a number of trials, that food source assumed

to be consumed, and thus abandoned. Then the employed bee assigned to that

source is converted to a scout. The scout then looks for a new arbitrary food source

and when it is found, the abandoned source is replaced with the newly found source.

Note that the positions of the food sources correspond to the solutions in the ABC

method and the nectar amounts correspond to the fitness values of the solutions.

The pseudocode of the ABC method is given in [38]. However, the original ABC

method was defined for continuous optimization. Therefore, its extension developed

by [39] for combinatorial optimization problems is used in this study. In the ABC

method for the MCP, initially, a population of SN random solutions is generated

where SN denotes the number of food sources in the ABC context. Then, new

solutions based on the existing solutions in the population are generated using Eq.

(4) in [39] together with one of the introduced neighborhood methods N1 and N2.

This simulates the task of the employed bees. If the neighbor solution has a higher

objective (fitness) value than the current solution, then the current solution is re-

placed with the new solution in the population. Otherwise, the neighbor solution

is discarded, and the current solution is kept in the population. Following the ex-

planation of the inventor of the ABC algorithm in [40], for simulating the task of

each onlooker, a solution is selected using the roulette wheel selection method, and

then a new solution is generated again using Eq. (4) in [39] together with one of the

introduced neighborhood methods N1 and N2. If a solution has not been replaced

after limit = 20 (a predefined parameter) number of trials, then it is replaced with

a random solution in the population and its trial count is reset. This simulates the

task of scouts. After these steps, a new population of solutions is obtained, and

the best solution found so far is saved. This whole population generation process is

repeated until no improvement is observed in the best solution found in the last 50

generations.

34



Genetic Algorithm (GA): The genetic algorithm is a well-known population-based al-

gorithm that tries to improve a population of solutions.

The genetic algorithm requires an encoding scheme for solutions, and the binary

string representation of solutions is used for this purpose where each bit in the

string identifies whether the corresponding suborder is executed or not. The initial

population is populated using randomly generated feasible solutions. To generate a

feasible random solution, first, a feasible solution is obtained using the hill climbing

method and then randomly chosen suborders are undone while preserving feasibility.

After that, all the solutions in the population are evaluated and their fitness values

are calculated. To generate the next population, a mating pool of parent solutions

is selected using the binary tournament selection method. Then, for each pair of

parent solutions, a uniform crossover operation with a probability of cp = 0.5 is

applied to obtain two child solutions while preventing possible positional bias. The

pseudocode of the uniform crossover operator which is modified for the MCP using

the introduced problem-specific neighborhood methods can be seen in Algorithm 9.

Input: Two parent solutions parentSol1 and parentSol2, the crossover probability cp, the
neighborhood method N(x)

Output: Two child solutions childSol1 and childSol2.
1: Set childSol1← parentSol1
2: Set childSol2← parentSol2
3: for all suborder ox1 in childSol1 do
4: Set ox2 as the corresponding suborder in childSol2
5: Set dice← a pseudorandom number from continous uniform distribution [0,1)
6: if (dice ≤ cp) and ((ox1 is executed and ox2 is not executed) or (ox1 is not executed and

ox2 is executed)) then
7: Set childSol1← N(childSol1, ox1)
8: Set childSol2← N(childSol2, ox2)
9: end if

10: end for
11: return the child solutions childSol1 and childSol2

Algorithm 9: Pseudocode for Crossover Operator (Uniform Crossover)

After the child solutions are obtained, each child solution is mutated using the bitwise

mutation operator with a probability of mp = 0.1. The pseudocode of the bitwise

mutation operator which is modified for the MCP using the introduced problem-

specific neighborhood methods can be seen in Algorithm 10.

Note that both the unmodified uniform crossover and mutation operators may cause
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infeasible solutions due to the structure of the MCP. Therefore, the neighborhood

methods proposed in this work is also used in both operators to preserve the feasi-

bility of child solutions.

After the next generation of solutions is obtained, the method evaluates the solu-

tions in the next generation and keeps track of the best solution found. This whole

population generation process is repeated until no improvement is observed in the

best solution found in the last 50 generations.

Input: The solution to be mutated Sol, the bitwise mutation probability mp, the neighborhood
method N(x)

Output: The mutated solution mutatedSol.
1: Set mutatedSol← Sol
2: for all suborder ox in mutatedSol do
3: Set dice← a pseudorandom number from continous uniform distribution [0,1)
4: if dice ≤ mp then
5: Set mutatedSol← N(mutatedSol, ox)
6: end if
7: end for
8: return the mutated solution mutatedSol

Algorithm 10: Pseudocode for Mutation Operator (Bitwise Mutation)

7 Experimental Results

To evaluate the outcome of the PPBM model and the performances of the proposed heuris-

tic methods, a test case generator based on the GNU Scientific Library [41] for the PPBM

model has been developed. Using the generator, a test package consisting of 1920 test

instances has been prepared. In this suite, the number of sales order and the number of

purchase orders are distributed with the Poisson distribution with mean values between

250 and 1250 for simulating different problem sizes, and the number of suborders inside

the purchase orders is distributed with the Poisson distribution with mean values between

1 and 5. For determining the items requested in the purchase orders, two approaches

have been considered. In the uniform selection approach, the items requested (i.e. the

suborders) are uniformly selected among all the items. In the popularity-based approach,

items are divided into different sized clusters such that each cluster represents a set of

substitutable items. Then, a random popularity value in the range [0,1] is assigned for

each item in the clusters where higher values indicate more popular items. To select items
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requested in a purchase order, first, a cluster is uniformly selected among all clusters, then

the items requested in the purchase order are determined using the roulette wheel selection

method among the items in the same cluster based on the popularity values of the items.

Thus, in this second approach, the likelihood of selecting a popular item is higher than

selecting an unpopular item in a purchase order whereas in the first approach both have

an equal chance to be selected.

For determining the prices of the items, the statistical information presented in the

work of Ghose et al. [42] which is based on Amazon.com marketplace sales data is used.

Finally, to determine the maximum amount of money mi that a participant hi wants

to spend in the market, the following procedure is applied. First, a budget ratio bri is

determined using the normal distribution with a mean value ranging between 10% and

80%. Then, the budget amount mi for a participant hi is calculated as:

mi = (bmax
i − bmin

i ) · bri + bmin
i (22)

where bmin
i the minimum amount of money that the participant hi needs to spend in

the market to purchase the cheapest item in his purchase orders given that all of her sales

orders are executed (0 if she does not need to spend any money), and bmax
i is the maximum

amount of money she needs to spend in the market to purchase all the items she wants

even if none of her sales orders are executed. Note that when the budget ratios bri of

all participants are small, they have to sell their items in the market in order to be able

to purchase the items they want, whereas when these ratios are close to 100%, they can

purchase the items without selling their items.

Note that the test case generator allows full factorial testing, that is, the effect of any

parameter can be studied while the other parameters take different values. The test suite

was solved using the industry-standard MIP solver, Gurobi Optimizer version 8 [43], on a

system consisting of a total of 16 cores clocked at 3.10 GHz with 8 GB of memory per core

using 64-bit Linux operating system. A time limit of 7 hours per problem instance was

defined for the MIP solver. Even though small to medium-sized instances were generated

(large instances with tens of thousands of orders are not generated intentionally) and a

high time limit is set per instance, among the 1920 instances in the test suite, the MIP
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solver could find optimal solutions for 1564 instances. While reporting the results of the

experiments, only these optimal solutions are used to prevent a possible bias.

7.1 Outcomes of the PPBM Model for Different Objectives and Com-

parison to the Simulated Outcome of the Current Market System

In this experiment, the outcomes of the PPBM model for different objectives are evaluated,

and a comparison to the estimated outcome of the current market system is provided. For

this purpose, all the test instances were solved to the optimality for each of the four

objective functions introduced in Section 5. Then, each problem instance was simulated

under the current market system conditions to estimate a possible outcome of the market

instance if the PPBM model is not used.

For simulating a test instance, first, the list L of all suborders is constructed and

shuffled. However, during shuffling the preferences of the participants are also taken into

consideration so that in this list the highly preferred suborders of a participant comes

before the less preferred suborders. Next, the initial budget of every participant hi is set

to the maximum amount of money she is willing to spend in the market, mi. Then, since

the current market system is based on the first-come-first-served scheme, each suborder

in the list L is tried to be executed one by one. If the current suborder in the list L is

executable, then it is marked as executed, the corresponding item is marked as sold and

the price of the item is transferred from the budget of the buyer to the budget of the seller.

If the current suborder is not executable, the next suborder in the list is processed. Since

the budgets of the participants change over time, the list is traversed many times until

no more executable suborders are left executable. Thus, this simulation has an optimistic

assumption that the participants never give up trying to purchase the items they want.

Each test instance is simulated 100 times each with a different order of the list L.

Table 1 summarizes the mean and the standard deviation values of the following four

criteria used for evaluating the market outcome for each objective function: (i) the trading

volume, (ii) the number of items traded, (iii) the number of satisfied sellers (i.e. the

participants with a seller role) whose at least one item is sold, and (iv) the number of

satisfied buyers (i.e. participants with a buyer role) who at least purchased one item in
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the market.

Table 1: Comparison of the market outcomes of the current market simulation results and
the PPBM model for each of the four objective functions.

Trading Volume # Items Traded # Satisfied Sellers # Satisfied Buyers

mean stdev imprv mean stdev imprv mean stdev imprv mean stdev imprv

Current Market Sim. 940322 428637 0.0% 441.9 175.2 0.0% 194.7 35.6 0.0% 186.1 35.8 0.0%

PPBM-Trading Vol. 1312164 500068 39.5% 523.5 190.9 18.5% 211.0 27.2 8.4% 210.9 29.0 13.3%
PPBM-Items Trd. 1177216 455096 25.2% 535.5 190.4 21.2% 213.3 25.6 9.5% 212.6 27.7 14.2%
PPBM-Pref. Sum 1195073 460812 27.1% 535.2 190.4 21.1% 214.7 25.3 10.3% 211.5 28.0 13.6%
PPBM-Blend. Obj. 1302570 498680 38.5% 533.4 190.9 20.7% 213.2 25.9 9.5% 211.2 28.1 13.5%

Based on these four criteria, PPBM-Trading Vol. objective provides the highest trading

volume among the other objectives as expected, however, it falls short for the remaining

criteria since it is focused on executing the suborders with the highest price. In the case

of the PPBM-Items Trd. objective, naturally it provides the highest number of traded

items in the market, however, the trading volume provided with this objective is fairly low

compared to the PPBM-Trading Vol. objective. PPBM-Pref. Sum objective, on the other

hand, aims to maximize the preference values of the participants declared for their items.

It is similar to the PPBM-Items Trd. objective in the sense that it tries to maximize the

weighted number of traded items. Therefore, the outcomes of both of these objectives are

quite similar according to these criteria (except for the fairness criteria which is discussed

below). Finally, the PPBM model using the blended objective, i.e. PPBM-Blend. Obj.,

provides improved and at the same time, balanced outcomes that are close to the best

improvement rate obtained for each of the four criteria. It is seen that the outcome of the

PPBM model improves the estimated outcome of the current market system in all four

criteria.

As explained in Section 4, the second objective, Eq.(3), of the PPBM model aims

to distribute the optimal primary objective value between the participants as evenly as

possible to provide fairness between the participants. To evaluate the fairness of the

allocation provided by the PPBM model, Jain’s fairness index is used. Based on Jain’s

et. al original work [44], for a system allocating resources to m participants, such that the

participant hi receives an allocation xi, Jain’s fairness index is defined for the system as

JFI(x1, x2, . . . , xm) =
[
∑m

i xi]
2∑m

i x
2
i

(23)
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Jain’s fairness index measures the equality of the allocation x1, x2, . . . , xm and returns

values between 1/m and 1. When all users receive the same allocation, i.e. x1 = x2 =

. . . = xm, the index returns 1 which means the allocation is totally fair. However, if one

participant gets all the resources and the others receive none, then the index returns 1/m.

Using the Jain’s fairness index, the fairness of the allocations provided by the estimated

outcome of the current market system and the outcome PPBM model are evaluated using

six criteria which can be seen in Table 2. For the participants with seller roles, the total

revenue, the sum of the sales preference values, and the number of items sold criteria

are used, whereas, for the participants with buyer roles, total expenses, the sum of the

purchase preference values and the number of items purchased criteria are used.

Table 2: Comparison of the fairness of the allocations provided by the current market
system and the PPBM model for each of the four objective functions using Jain’s fairness
index.

Jain’s Fairness Indices for Sellers Jain’s Fairness Indices for Buyers

Revenue Sales Pref. Items Sold Expenses Purch. Pref. Items Purch.

mean stdev mean stdev mean stdev mean stdev mean stdev mean stdev

Current Market Sim. 0.80 0.13 0.83 0.12 0.74 0.14 0.78 0.07 0.85 0.07 0.74 0.09

PPBM-Trading Vol. 0.91 0.09 0.89 0.09 0.89 0.09 0.93 0.04 0.92 0.05 0.94 0.04
PPBM-Items Trd. 0.88 0.10 0.90 0.09 0.90 0.09 0.89 0.04 0.94 0.05 0.95 0.04
PPBM-Pref. Sum 0.89 0.10 0.91 0.08 0.91 0.08 0.89 0.04 0.95 0.04 0.94 0.05
PPBM-Blend. Obj. 0.91 0.09 0.90 0.09 0.90 0.09 0.92 0.05 0.94 0.04 0.94 0.05

The range of mean values of the fairness indices for the estimated outcome of the market

simulation ranges between 0.74 to 0.85 for these criteria even though the simulation has

an optimistic assumption that the buyers never give up trying. However, for the PPBM

model with any objective, the lowest mean value for the index is 0.88 which goes up to

0.95. The PPBM model using the blended objective, i.e. PPBM-Blend. Obj., provides

again the balanced results where the mean values lie between 0.90 and 0.94. Therefore,

it can be concluded that the PPBM model provides fairer allocations of items sold in the

market compared to the current market system based on the simulation results.

7.2 Performances of the Proposed Heuristic Methods

To evaluate the performances of the heuristic methods, all the optimally solved instances

in the test suite are also solved using the proposed seven heuristic methods, HC-best, HC-
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random, ILS-best, ILS-random, ABC, ACO and GA. For the population-based heuristics

ABC, ACO and GA, three different population sizes2, i.e. 20, 50 and 100 are tested

which are referred to X-20, X-50, and X-100 where X is ABC or ACO or GA. Also, each

heuristic method is tested using both neighborhood methods N1 and N2. Thus, a total of

26 heuristic configurations are tested for each of the optimally solved test instances. Note

that, in this section, the performances of the heuristics are presented using the objective

function PPBM-Blended Obj. since this objective is considered to provide the best overall

outcomes among all four objective functions. The performances of the heuristics for the

other objective functions are quite similar to the PPBM-Blended Obj., therefore, they are

not included in this study to provide clarity.

The quality of the solutions found by the heuristic methods is evaluated by the success

ratio measure which is defined as:

Success ratio of a sol. =
Obj. val. found by the heur. sol.

Optimal objective value
· 100% (24)

The mean values and the box plot of the success ratios of the solutions found by the

proposed heuristic methods can be seen in Figure 4. The mean differences of the success

ratios of the solutions are also analyzed using two-way analysis of variance (ANOVA) test

at an α = 0.05 significance level using the independent variables: heuristic method and

neighborhood method. It is seen that there is a statistically significant interaction between

the heuristic method and the neighborhood method for the success ratio, F (12, 40638) =

30.965, p ≤ .0005, partial η2 = .009. Therefore, since there exists an interaction effect,

simple main effects are analyzed and reported [45]. The pairwise comparison results which

indicate whether the mean differences are significant or not can be seen in Table 3, Table

4 and Table 5. Note that in order to prevent repetitions in the text, the term “significant”

will be used in the remaining text to indicate that the corresponding mean difference is

statistically significant at the α = 0.05 significance level.

The two hill climbing methods, HC-best and HC-random, provides almost the same

results (failed to reject the null hypothesis) with mean success ratios of approximately

86.3% and 86.1% for the neighborhood method N1. The mean success ratios increase to

2Population size refers to the number of food sources in the ABC method and the number of ants in
the ACO method.
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Figure 4: Boxplot presenting the success ratio of solutions of the heuristic methods for
each of the neighborhood method N1 and N2. (x) indicates the mean success ratio of the
corresponding heuristic method.

Table 3: Pairwise comparsions of the heuristic methods using the neighborhood method
N1 provided by the simple main effect analysis of the two-way ANOVA test. Each cell
at the coordinate (X,Y ) represents the difference between the mean success rate of the
heuristic method at the row X and the mean success rate of the heuristic method at
the column Y . (*) indicates that the corresponding mean difference is significant at the
α = 0.05 significance level.

Neigh. N1 HC-best HC-random ILS-best ILS-random ABC-20 ABC-50 ABC-100 ACO-20 ACO-50 ACO-100 GA-20 GA-50 GA-100

HC-best 0 0.19 -5.83* -5.05* -5.99* -6.33* -6.58* -6.07* -6.56* -6.95* -10.53* -10.70* -10.81*
HC-random -0.19 0 -6.02* -5.24* -6.18* -6.52* -6.77* -6.26* -6.75* -7.14* -10.72* -10.89* -11.00*

ILS-best 5.83* 6.02* 0 0.78* -0.16 -0.50 -0.75* -0.24 -0.73* -1.12* -4.70* -4.87* -4.98*
ILS-random 5.05* 5.24* -0.78* 0 -0.94* -1.28* -1.53* -1.03* -1.52* -1.91* -5.48* -5.65* -5.77*

ABC-20 5.99* 6.18* 0.16 0.94* 0 -0.34 -0.59 -0.08 -0.57 -0.96* -4.54* -4.71* -4.82*
ABC-50 6.33* 6.52* 0.50 1.28* 0.34 0 -0.25 0.26 -0.23 -0.62 -4.12* -4.37* -4.48*
ABC-100 6.58* 6.77* 0.75* 1.53* 0.59 0.25 0 0.50 0.01 -0.38 -3.95* -4.12* -4.24*

ACO-20 6.07* 6.26* 0.24 1.03* 0.08 -0.26 -0.50 0 -0.49 -0.88* -4.46* -4.63* -4.74*
ACO-50 6.56* 6.75* 0.73* 1.52* 0.57 0.23 -0.01 0.49 0 -0.39 -3.97* -4.14* -4.25*
ACO-100 6.95* 7.14* 1.12* 1.91* 0.96* 0.62 0.38 0.88* 0.39 0 -3.58* -3.75* -3.86*

GA-20 10.53* 10.72* 4.70* 5.48* 4.54* 4.20* 3.95* 4.46* 3.97* 3.58* 0 -0.17 -0.28
GA-50 10.70* 10.89* 4.87* 5.65* 4.71* 4.37* 4.12* 4.63* 4.14* 3.75* 0.17 0 -0.11
GA-100 10.81* 11.00* 4.98* 5.77* 4.82* 4.48* 4.24* 4.74* 4.25* 3.86* 0.28 0.11 0
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Table 4: Pairwise comparsions of the heuristic methods using the neighborhood method
N2 provided by the simple main effect analysis of the two-way ANOVA test. Each cell
at the coordinate (X,Y ) represents the difference between the mean success rate of the
heuristic method at the row X and the mean success rate of the heuristic method at
the column Y . (*) indicates that the corresponding mean difference is significant at the
α = 0.05 significance level.

Neigh. N2 HC-best HC-random ILS-best ILS-random ABC-20 ABC-50 ABC-100 ACO-20 ACO-50 ACO-100 GA-20 GA-50 GA-100

HC-best 0 0.12 -4.50* -2.70* -5.18* -5.51* -5.67* -3.63* -4.19* -4.54* -7.79* -7.96* -8.07*
HC-random -0.12 0 -4.62* -2.82* -5.30* -5.63* -5.78* -3.75* -4.30* -4.66* -7.91* -8.08* -8.19*

ILS-best 4.50* 4.62* 0 1.80* -0.68* -1.01* -1.17* 0.87* 0.32 -0.04 -3.29* -3.46* -3.57*
ILS-random 2.70* 2.82* -1.80* 0 -2.48* -2.81* -2.97* -0.93* -1.48* -1.84* -5.09* -5.26* -5.37*

ABC-20 5.18* 5.30* 0.68* 2.48* 0 -0.33 -0.49 1.55* 1.00* 0.64 -2.61* -2.78* -2.89*
ABC-50 5.51* 5.63* 1.01* 2.81* 0.33 0 -0.16 1.87* 1.32* 0.97* -2.29* -2.45* -2.57*
ABC-100 5.67* 5.78* 1.17* 2.97* 0.49 0.16 0 2.03* 1.48* 1.12* -2.13* -2.29* -2.41*

ACO-20 3.63* 3.75* -0.87* 0.93* -1.55* -1.87* -2.03* 0 -0.55 -0.91* -4.16* -4.33* -4.44*
ACO-50 4.19* 4.30* -0.32 1.48* -1.00* -1.32* -1.48* 0.55 0 -0.36 -3.61* -3.77* -3.89*
ACO-100 4.54* 4.66* 0.04 1.84* -0.64 -0.97* -1.12* 0.91* 0.36 0 -3.25* -3.42* -3.53*

GA-20 7.79* 7.91* 3.29* 5.09* 2.61* 2.29* 2.13* 4.16* 3.61* 3.25* 0 -0.17 -0.28
GA-50 7.96* 8.08* 3.46* 5.26* 2.78* 2.45* 2.29* 4.33* 3.77* 3.42* 0.17 0 -0.11
GA-100 8.07* 8.19* 3.57* 5.37* 2.89* 2.57* 2.41* 4.44* 3.89* 3.53* 0.28 0.11 0

approximately 88.6% and 88.5% when the neighborhood method N2 is used. This increase

is statistically significant.

The iterated local search methods provide better solutions than the hill climbing meth-

ods as expected since they search through the space of local optima. The mean success

ratios for these methods are between 91.3% and 93.1% which are significantly higher than

the mean success ratios of HC-best and HC-random for both neighborhood methods. Also

different from the hill climbing methods, in the ILS method, best-first and stochastic

approaches provide different results. ILS-best provides slightly but significantly better

solutions compared to its stochastic counterpart. Finally, the choice of the neighborhood

method is insignificant for the ILS-random method, whereas, for the ILS-best method, the

neighborhood method N2 provides significantly better results than the method N1.

The ABC method, being a population-based method, provides success ratios between

approximately 92.2% and 94.1% varying with the population size (the number of food

sources to be exact) and the used neighborhood method. Since it works with a population

of solutions rather than a single solution, the ABC method provide significantly better

solutions than the ILS methods in general. The only exception is that the null hypothesis

is failed to be rejected for the mean differences between the ABC and ILS-best for the

neighborhood method N1. Also, for the ABC method, the neighborhood method N2
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Table 5: Pairwise comparsions of the neighborhood methods N1 and N2 for each heuristic
method provided by the simple main effect analysis of the two-way ANOVA test. Each
cell represents the difference between the mean success rate of the heuristic method using
the neighborhood method N1 and the mean success rate of the heuristic method using
the neighborhood method N2. (*) indicates that the corresponding mean difference is
significant at the α = 0.05 significance level.

Difference in means
Heuristic between N1 and N2

HC-best -2.373*
HC-random -2.444*

ILS-best -1.046*
ILS-random -0.027

ABC-20 -1.563*
ABC-50 -1.549*
ABC-100 -1.463*

ACO-20 0.066
ACO-50 0.003
ACO-100 0.036

GA-20 0.364
GA-50 0.367
GA-100 0.368

provides approximately 1.5% better results in terms of success ratio which is also shown

to be statistically significant.

The ACO method, on the other hand, provides success ratios between approximately

92.3% and 93.2%. This range is quite close to the success ratios the ABC method when the

neighborhood N1 is used. Therefore, the statistical analysis does not indicate a significant

difference between the results of ACO and the ABC methods for the neighborhood method

N1 (the only exception is that the mean success ratio of ACO-100 is significantly higher

than the mean success ratio of ABC-20). However, for the neighborhood method N2, the

ABC method provides significantly better results than the ACO method. The selection of

neighborhood method is insignificant on the mean success ratio for the ACO method.

Finally, the genetic algorithm provides the best solutions among all heuristics with

the mean success ratios in the range of 96.4% to 97.1%. It provides significantly better

solutions than all the other heuristic methods presented for each of the neighborhood

method N1 and N2 even when the population size is 20. The neighborhood method N1

when used with the GA provides better solutions compared to the neighborhood method

N2, however, the mean difference cannot be shown to be statistically significant.
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In all population-based heuristics, three population sizes, 20, 50 and 100, are tested.

The mean success ratio increases slightly as the population size increases for all the meth-

ods; however, the statistical test is unable to show a significant difference among these

values at the α = 0.05 significance level in general (only the mean difference between

ACO-20 and ACO-100 is significant). Therefore, it is considered that using a population

size greater than 20 may not be needed for these heuristic methods.

The market outcomes provided by the heuristic methods can be seen in Table 6. The

general trend of the heuristic performances for the objective value is also observed in the

four criteria of the market outcome evaluation. The genetic algorithm provides the best

market outcome where the mean trading volume is within 4% of the optimal solution, the

mean number of items traded is within 3% and the mean numbers of satisfied sellers and

the buyers are within only 1%.

Finally, using the Jain’s fairness index, the fairness of the allocations provided by the

heuristic methods are compared to the optimal allocation found by the MIP solver in Table

7. All the proposed methods provide solutions the mean index values of which are within

8% of the optimal allocation for all six criteria. Again, the genetic algorithm provides the

fairest results among all the proposed heuristic methods only within 1% of the mean index

value of the optimal solutions.

The comparison of the running times of the proposed heuristic methods and the MIP

solver can be seen in Figure 5. Note that for all population-based heuristics, ABC, ACO

and GA, the same population sizes and the same stopping criterion is used. All these

methods terminate when the best solution cannot be improved in the last 50 generations.

The mean running time of the genetic algorithm using the neighborhood method N1

increases almost linearly as the population size increases as expected in the range of 0.5

seconds to 3.4 seconds where the most difficult instance requires approximately 13 seconds

when the population size is 100. These values slightly increase when the neighborhood

method N2 is used instead of N1.

The ACO method is the slowest method among all the heuristic methods with mean

running times in the range of 8.7 seconds to 43.5 seconds. The reason for this slow

performance is that the ACO method constructs a population of solutions from scratch at

every generation. The maximum running time for this method is 642 seconds for the most
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Table 6: Comparison of the market outcomes of the heuristic methods and the optimal
solutions found by the MIP solver.

Trading Volume # Items Traded # Satisfied Sellers # Satisfied Buyers

Neigh. Heuristic mean stdev success mean stdev success mean stdev success mean stdev success

MIP Solver (Opt.) 1302570 498680 100.0% 533.4 190.9 100.0% 213.2 25.9 100.0% 211.2 28.1 100.0%

N1

HC-best 1144969 462017 87.9% 461.4 172.2 86.5% 199.2 33.8 93.4% 203.8 34.0 96.5%
HC-random 1161237 480644 89.1% 457.2 177.8 85.7% 197.9 35.7 92.8% 199.3 36.0 94.3%

ILS-best 1206156 472450 92.6% 494.0 178.6 92.6% 207.4 29.6 97.3% 207.7 30.7 98.3%
ILS-random 1207806 480359 92.7% 490.5 180.7 92.0% 205.9 30.4 96.6% 203.3 31.5 96.3%

ABC-20 1217809 475549 93.5% 494.1 180.7 92.6% 206.1 30.4 96.7% 204.7 31.2 96.9%
ABC-50 1221552 475349 93.8% 495.6 180.7 92.9% 206.4 30.1 96.8% 204.9 31.0 97.0%
ABC-100 1223962 476007 94.0% 497.0 181.1 93.2% 206.8 29.8 97.0% 205.1 30.7 97.1%

ACO-20 1220349 487861 93.7% 494.0 184.3 92.6% 205.4 30.7 96.4% 203.8 31.8 96.5%
ACO-50 1225802 489771 94.1% 496.6 185.1 93.1% 205.9 30.4 96.6% 204.1 31.6 96.6%
ACO-100 1230123 490417 94.4% 498.8 185.4 93.5% 206.4 30.2 96.8% 204.5 31.4 96.8%

GA-20 1255357 487052 96.4% 522.5 187.1 98.0% 211.9 27.0 99.4% 208.9 29.1 98.9%
GA-50 1256951 486419 96.5% 523.0 187.0 98.1% 212.0 26.9 99.4% 208.9 29.0 98.9%
GA-100 1258021 485996 96.6% 523.3 186.9 98.1% 212.1 26.6 99.5% 209.0 28.9 98.9%

N2

HC-best 1175422 474817 90.2% 473.4 178.3 88.8% 201.5 33.4 94.5% 205.1 33.5 97.1%
HC-random 1180191 482915 90.6% 471.8 179.4 88.5% 201.9 33.0 94.7% 203.0 34.1 96.1%

ILS-best 1223934 479670 94.0% 497.2 180.8 93.2% 207.8 29.6 97.5% 208.3 30.8 98.6%
ILS-random 1208012 479366 92.7% 490.3 180.3 91.9% 205.8 30.2 96.5% 203.3 31.5 96.3%

ABC-20 1237390 484092 95.0% 500.4 183.4 93.8% 207.2 30.0 97.2% 206.7 31.1 97.9%
ABC-50 1240663 484226 95.2% 501.9 183.6 94.1% 207.7 29.7 97.4% 206.9 30.9 98.0%
ABC-100 1242403 484082 95.4% 502.7 183.6 94.3% 207.9 29.5 97.5% 207.0 30.8 98.0%

ACO-20 1220047 488248 93.7% 493.4 184.5 92.5% 205.3 31.0 96.3% 203.8 31.9 96.5%
ACO-50 1225943 489996 94.1% 496.5 185.4 93.1% 205.8 30.7 96.5% 204.1 31.7 96.6%
ACO-100 1229816 490467 94.4% 498.3 185.7 93.4% 206.2 30.2 96.7% 204.5 31.4 96.8%

GA-20 1254647 483564 96.3% 516.5 183.9 96.8% 211.6 26.9 99.2% 208.9 28.9 98.9%
GA-50 1256459 483456 96.5% 517.1 183.7 97.0% 211.7 26.8 99.3% 209.0 28.8 99.0%
GA-100 1257340 483123 96.5% 517.6 183.7 97.0% 211.8 26.8 99.3% 209.0 28.8 99.0%
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Table 7: Comparison of the fairness of the allocations provided by the heuristic methods
and the optimal solution found by the MIP solver using Jain’s fairness index.

Jain’s Fairness Indices for Sellers Jain’s Fairness Indices for Buyers

Revenue Sales Pref. Items Sold Expenses Purch. Pref. Items Purch.

Neigh. Heuristic mean stdev mean stdev mean stdev mean stdev mean stdev mean stdev

MIP Solver (Opt.) 0.91 0.09 0.90 0.09 0.90 0.09 0.92 0.05 0.94 0.04 0.94 0.05

N1

HC-best 0.83 0.12 0.83 0.12 0.83 0.12 0.85 0.06 0.88 0.06 0.88 0.06
HC-random 0.83 0.13 0.82 0.12 0.82 0.12 0.84 0.07 0.86 0.07 0.86 0.07

ILS-best 0.87 0.11 0.87 0.10 0.87 0.10 0.88 0.06 0.91 0.05 0.91 0.05
ILS-random 0.87 0.11 0.86 0.10 0.86 0.10 0.86 0.06 0.89 0.06 0.89 0.06

ABC-20 0.87 0.11 0.86 0.11 0.86 0.11 0.87 0.06 0.90 0.05 0.90 0.06
ABC-50 0.87 0.11 0.86 0.11 0.86 0.10 0.87 0.06 0.90 0.05 0.90 0.06
ABC-100 0.87 0.11 0.87 0.10 0.87 0.10 0.87 0.06 0.90 0.05 0.90 0.06

ACO-20 0.87 0.12 0.86 0.11 0.86 0.11 0.87 0.06 0.89 0.06 0.90 0.06
ACO-50 0.87 0.11 0.86 0.11 0.86 0.11 0.87 0.06 0.90 0.06 0.90 0.06
ACO-100 0.87 0.11 0.87 0.11 0.87 0.11 0.87 0.06 0.90 0.06 0.90 0.06

GA-20 0.90 0.10 0.89 0.09 0.89 0.09 0.89 0.05 0.93 0.05 0.93 0.05
GA-50 0.90 0.10 0.89 0.09 0.89 0.09 0.89 0.05 0.93 0.05 0.93 0.05
GA-100 0.90 0.09 0.89 0.09 0.89 0.09 0.90 0.05 0.93 0.05 0.93 0.05

N2

HC-best 0.85 0.12 0.84 0.12 0.84 0.12 0.86 0.06 0.89 0.06 0.89 0.06
HC-random 0.84 0.12 0.84 0.11 0.84 0.11 0.86 0.06 0.88 0.06 0.88 0.06

ILS-best 0.88 0.11 0.87 0.10 0.87 0.10 0.89 0.05 0.91 0.05 0.91 0.05
ILS-random 0.87 0.11 0.86 0.10 0.86 0.10 0.86 0.06 0.89 0.06 0.89 0.06

ABC-20 0.88 0.11 0.87 0.11 0.87 0.11 0.88 0.06 0.91 0.05 0.91 0.05
ABC-50 0.88 0.11 0.87 0.10 0.87 0.10 0.88 0.06 0.91 0.05 0.91 0.05
ABC-100 0.88 0.11 0.87 0.10 0.87 0.10 0.88 0.05 0.91 0.05 0.91 0.05

ACO-20 0.87 0.12 0.86 0.11 0.86 0.11 0.87 0.06 0.89 0.06 0.90 0.06
ACO-50 0.87 0.12 0.86 0.11 0.86 0.11 0.87 0.06 0.90 0.06 0.90 0.06
ACO-100 0.87 0.11 0.86 0.11 0.86 0.11 0.87 0.06 0.90 0.06 0.90 0.06

GA-20 0.90 0.09 0.89 0.09 0.89 0.09 0.89 0.05 0.92 0.05 0.93 0.05
GA-50 0.90 0.09 0.89 0.09 0.89 0.09 0.89 0.05 0.92 0.05 0.93 0.05
GA-100 0.90 0.09 0.89 0.09 0.89 0.09 0.89 0.05 0.92 0.05 0.93 0.05

47



difficult instance.

The mean running times of the ABC method is in between 2.9 seconds and 17.8 seconds

depending on the population size and the neighborhood function used. It is faster than

the ACO method, since it does not construct solutions from scratch in the successive

generations. However, it is also considerably slower than the GA. The maximum running

time of the ABC method is observed as 88 seconds.

The running times of the ILS algorithm varies greatly depending on whether the best-

first or stochastic approach is taken. The running time of the ILS-best method is compa-

rable to the genetic algorithm with population size 100. However, ILS-random runs 10x

to 20x faster than the ILS-best method on average depending on the used neighborhood

method. Hill climbing algorithms are the fastest methods among all with a mean running

time of less than 0.4 seconds, and a maximum running time of 4.1 seconds. The com-

plexity of the neighborhood method N2 over the neighborhood method N1 can also be

seen in the mean running time values. For all the heuristic methods, using the neighbor-

hood method N2 increases the mean running times of the corresponding method due to

its greater complexity.

Although, large problem instances are intentionally avoided in the test suite in order

to be able to find the optimal solutions for unbiased comparison, the mean running time

of the MIP solver is approximately 150 seconds with a maximum value of approximately

6400 seconds. Note that the MIP solver was unable to find the optimal solutions for 356

cases in 7 hours (the time limit defined for each instance). These unsolvable instances are

not included in the mean running time value of the MIP solver.

Note that the experimental results provided in this study are considered to be on par

with the theoretical expectations for the proposed heuristics. The hill-climbing method

is a local search heuristic that tries to improve a given initial solution by accepting only

improving modifications to reach a local optimum with respect to the defined neighborhood

relation. Therefore, the biggest drawback of this method is that it gets stuck at local

optima. This is also observed experimentally that the success rate of hill-climbing methods

is less than 90% on average. However, the stochastic hill-climbing method is the fastest

method among the other proposed methods on average.

Different from the hill-climbing method, the iterated local search method does not

48



0.2
0.0

2.0
0.2

2.9
7.4

15.7
8.7

21.5
42.8

0.5
1.5

3.4
0.4
0.4

4.3
0.2

3.3
8.5

17.8
9.4

22.2
43.5

0.7
2.0

4.5
154

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0

HC-best
HC-random

ILS-best
ILS-random

ABC-20
ABC-50

ABC-100
ACO-20
ACO-50

ACO-100
GA-20
GA-50

GA-100
HC-best

HC-random
ILS-best

ILS-random
ABC-20
ABC-50

ABC-100
ACO-20
ACO-50

ACO-100
GA-20
GA-50

GA-100
MIP Optimal Solver

N
ei

gh
bo

rh
oo

d 
N

1
N

ei
gh

bo
rh

oo
d 

N
2

.

Running Time (s)

Figure 5: The mean running times (in seconds) of the MIP solver and the heuristic methods
for each of the neighborhood method N1 and N2.

stop immediately when it finds a local optimum. Instead, it tries to escape from the local

optimum by jumping to another solution in the solution space which is in close vicinity

of the local optimum. Then, the method tries to improve this solution to reach possibly

another local optimum. The iterated local search method uses the hill-climbing method

for finding a local optimum. Therefore, it may be considered that the iterated local search

method searches the local optima of the solution space, and hence, it is expected to provide

better solutions than the hill-climbing method. This is also observed experimentally such

that the average success ratio of the iterated local search methods is significantly higher

than that of the hill-climbing methods reaching approximately 93%.

Both the hill-climbing and iterated local search methods work on a single solution

to improve it. However, the artificial bee colony, ant colony optimization, and genetic

algorithm are population-based methods that work on a population of solutions. Therefore,

it is expected that they will come up with a better solution than the hill-climbing and

iterated local search methods since they search more of the solution space. However, based

on the experimental results, the gain to be obtained when using the artificial bee colony
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and ant colony optimization methods compared to the iterated local search is low, albeit

significant. The genetic algorithm, on the other hand, is observed to search the solution

space more efficiently than the other population-based methods. It provides higher quality

solutions than the artificial bee colony and ant colony optimization methods also in less

amount of time.

8 Conclusion

Compared to the traditional markets, electronic markets have the benefits of weakening

time and space restrictions, reducing transaction costs, and allowing increased product

variety [1]. Due to these benefits, in their seminal article, Malone et al. [46] envisioned

that electronic markets would be the dominant institutions in the overall economic activity.

Although there are many successful electronic markets for retail trade, as also stated by

Clausen et al. [47], the full potential of resale trade remains to be captured.

Therefore, this study proposes an electronic market model, the PPBM model, for resale

markets to increase the trading of used goods which has strong environmental and economic

benefits in the circular economy. For this purpose, the PPBM model features several

mechanisms such as (i) allowing the participants to spend the revenue to be obtained in

the market for purchasing new items, (ii) preventing them from having a budget deficit,

(iii) allowing them to express their substitutability preferences for the items they want to

purchase, and (iv) allowing them to prioritize the items they want to sell and purchase.

In this study, the PPBM model and the associated market clearing problem, are for-

mally defined. The market clearing problem is a combinatorial optimization problem that

is formulated as a hierarchical multi-objective linear integer program with an adaptive

objective function to provide fair allocation between the participants. Four different ob-

jective functions are introduced which can also be further extended depending on the

intended market application. It is proven that the market clearing problem is intractable.

Therefore, several heuristic methods are also proposed including hill climbing, iterated

local search, artificial bee colony, ant colony optimization and genetic algorithms along

with two problem-specific novel neighborhood methods. To estimate the performance

of the model itself and the proposed heuristic methods, a large test suite consisting of
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approximately two thousand test instances is prepared.

The outcomes provided by the optimal solutions of the PPBM model using each in-

troduced objective function are compared to the outcome of the current market system

simulation under four different outcome criteria. It is observed that the proposed model

provides a significant improvement in market allocation compared to the current market

system. Additionally, the fairness of the allocations provided by the model is also evalu-

ated using Jain’s fairness criteria [44] the result of which indicates that the model provides

more than 90% fair allocations under six different criteria defined for both sellers and

buyers.

Next, the performances of the proposed heuristic methods are also compared to the op-

timal solutions found by an industry-standard general-purpose MIP solver. It is observed

that the MIP solver is incapable of solving test instances even with approximately one

thousand orders. However, the proposed heuristic methods execute much faster compared

to the MIP solver, and the degradation in the quality of the solutions found is considered

small especially for the genetic algorithm. The genetic algorithm using the problem-specific

operators based on the proposed neighborhood methods provides the best solutions which

are within 3% of the optimal solutions in terms of the objective value on average. Although

this gap is higher for hill climbing and iterated local search methods, they can be preferred

for solving large problem instances where it is not feasible to use the genetic algorithm

due to its greater running time requirement.

Finally, the market outcomes provided by the heuristic methods are also compared to

the optimal solutions of the model. As in the case of the objective values, the genetic

algorithm again provides the best market outcomes for each of the defined criteria, the

outcomes found by the genetic algorithm are at worst within 4% of the optimal solutions

on average. Furthermore, the allocations found by this method are also at most 1% less

fair compared to the optimal solutions.

As a conclusion, the empirical analysis suggests that the PPBM model will help to

improve the market outcomes of the resale markets and contribute to the growth of cir-

cular economy while providing fair allocations between the participants. Although the

optimization problem of the model is intractable, along with the proposed efficient heuris-

tic methods, the model can be used in large scale resale markets with a small deviation
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from the optimal allocation. As a future work, further economic efficiency analyses can be

conducted which would shed light on the expected performance of the model in real life.

Acknowledgments

This work has been supported by Marmara University Scientific Research Projects Coor-

dination Unit under grant number FEN-A-130612-0218.

References
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